Wang JC: DNA topoisomerases. Annu Rev Biochem. 1996, 65: 635-692. 10.1146/annurev.bi.65.070196.003223.
Article
CAS
PubMed
Google Scholar
Roca J, Wang JC: DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell. 1994, 77: 609-616. 10.1016/0092-8674(94)90222-4.
Article
CAS
PubMed
Google Scholar
Wang JC: Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002, 3: 430-440. 10.1038/nrm831.
Article
CAS
PubMed
Google Scholar
Chen AY, Liu LF: DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994, 34: 191-218. 10.1146/annurev.pa.34.040194.001203.
Article
CAS
PubMed
Google Scholar
Andoh T, Ishida R: Catalytic inhibitors of DNA topoisomerase II. Biochim Biophys Acta. 1998, 1400: 155-171.
Article
CAS
PubMed
Google Scholar
Larsen AK, Escargueil AE, Skladanowski A: Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther. 2003, 99: 167-181. 10.1016/S0163-7258(03)00058-5.
Article
CAS
PubMed
Google Scholar
Jensen LH, Nitiss KC, Rose A, Dong J, Zhou J, Hu T, Osheroff N, Jensen PB, Sehested M, Nitiss JL: A novel mechanism of cell killing by anti-topoisomerase II bisdioxopiperazines. J Biol Chem. 2000, 275: 2137-2146. 10.1074/jbc.275.3.2137.
Article
CAS
PubMed
Google Scholar
Renodon-Corniere A, Jensen LH, Nitiss JL, Jensen PB, Sehested M: Interaction of human DNA topoisomerase II alpha with DNA: quantification by surface plasmon resonance. Biochemistry. 2002, 41: 13395-13402. 10.1021/bi0263614.
Article
CAS
PubMed
Google Scholar
Roca J, Ishida R, Berger JM, Andoh T, Wang JC: Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA. 1994, 91: 1781-1785.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morris SK, Baird CL, Lindsley JE: Steady-state and rapid kinetic analysis of topoisomerase II trapped as the closed-clamp intermediate by ICRF-193. J Biol Chem. 2000, 275: 2613-2618. 10.1074/jbc.275.4.2613.
Article
CAS
PubMed
Google Scholar
van Hille B, Hill BT: Yeast cells expressing differential levels of human or yeast DNA topoisomerase II: a potent tool for identification and characterization of topoisomerase II-targeting antitumour agents. Cancer Chemother Pharmacol. 1998, 42: 345-356. 10.1007/s002800050828.
Article
CAS
PubMed
Google Scholar
Kobayashi M, Adachi N, Aratani Y, Kikuchi A, Koyama H: Decreased topoisomerase IIalpha expression confers increased resistance to ICRF-193 as well as VP-16 in mouse embryonic stem cells. Cancer Lett. 2001, 166: 71-77. 10.1016/S0304-3835(01)00447-5.
Article
CAS
PubMed
Google Scholar
Adachi N, Suzuki H, Iiizumi S, Koyama H: Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193: implications for the repair of topoisomerase II-mediated DNA damage. J Biol Chem. 2003, 278: 35897-35902. 10.1074/jbc.M306500200.
Article
CAS
PubMed
Google Scholar
Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF: The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci USA. 2003, 100: 3239-3244. 10.1073/pnas.0736401100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang KC, Gao H, Yamasaki EF, Grabowski DR, Liu S, Shen LL, Chan KK, Ganapathi R, Snapka RM: Topoisomerase II poisoning by ICRF-193. J Biol Chem. 2001, 276: 44488-44494. 10.1074/jbc.M104383200.
Article
CAS
PubMed
Google Scholar
Hajji N, Pastor N, Mateos S, Dominguez I, Cortes F: DNA strand breaks induced by the anti-topoisomerase II bis-dioxopiperazine ICRF-193. Mutat Res. 2003, 530: 35-46.
Article
CAS
PubMed
Google Scholar
Oestergaard VH, Knudsen BR, Andersen AH: Dissecting the cell-killing mechanism of the topoisomerase II-targeting drug ICRF-193. J Biol Chem. 2004, 279: 28100-28105. 10.1074/jbc.M402119200.
Article
CAS
PubMed
Google Scholar
Paques F, Haber JE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999, 63: 349-404.
PubMed Central
CAS
PubMed
Google Scholar
Bai Y, Symington LS: A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996, 10: 2025-2037.
Article
CAS
PubMed
Google Scholar
Dresser ME, Ewing DJ, Conrad MN, Dominguez AM, Barstead R, Jiang H, Kodadek T: DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics. 1997, 147: 533-544.
PubMed Central
CAS
PubMed
Google Scholar
Lewis LK, Resnick MA: Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res. 2000, 451: 71-89.
Article
CAS
PubMed
Google Scholar
Broomfield S, Hryciw T, Xiao W: DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res. 2001, 486: 167-184.
Article
CAS
PubMed
Google Scholar
Simon JA, Szankasi P, Nguyen DK, Ludlow C, Dunstan HM, Roberts CJ, Jensen EL, Hartwell LH, Friend SH: Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res. 2000, 60: 328-333.
CAS
PubMed
Google Scholar
Nicholson A, Hendrix M, Jinks-Robertson S, Crouse GF: Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics. 2000, 154: 133-146.
PubMed Central
CAS
PubMed
Google Scholar
Litman T, Druley TE, Stein WD, Bates SE: From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001, 58: 931-959.
Article
CAS
PubMed
Google Scholar
Ferreira-Pereira A, Marco S, Decottignies A, Nader J, Goffeau A, Rigaud JL: Three-dimensional reconstruction of the Saccharomyces cerevisiae multidrug resistance protein Pdr5p. J Biol Chem. 2003, 278: 11995-11999. 10.1074/jbc.M212198200.
Article
CAS
PubMed
Google Scholar
Endo-Ichikawa Y, Kohno H, Furukawa T, Ueda T, Ogawa Y, Tokunaga R, Taketani S: Requirement of multiple DNA-protein interactions for inducible expression of RNR3 gene in Saccharomyces cerevisiae in response to DNA damage. Biochem Biophys Res Commun. 1996, 222: 280-286. 10.1006/bbrc.1996.0735.
Article
CAS
PubMed
Google Scholar
Jia X, Zhu Y, Xiao W: A stable and sensitive genotoxic testing system based on DNA damage induced gene expression in Saccharomyces cerevisiae. Mutat Res. 2002, 519: 83-92.
Article
CAS
PubMed
Google Scholar
Mercier G, Denis Y, Marc P, Picard L, Dutreix M: Transcriptional induction of repair genes during slowing of replication in irradiated Saccharomyces cerevisiae. Mutat Res. 2001, 487: 157-172.
Article
CAS
PubMed
Google Scholar
Basrai MA, Velculescu VE, Kinzler KW, Hieter P: NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol Cell Biol. 1999, 19: 7041-7049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mai B, Breeden L: Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol. 1997, 17: 6491-6501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B: A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol. 1997, 17: 1212-1223.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zu T, Verna J, Ballester R: Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae. Mol Genet Genomics. 2001, 266: 142-155. 10.1007/s004380100537.
Article
CAS
PubMed
Google Scholar
Martens JA, Winston F: Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev. 2002, 16: 2231-2236. 10.1101/gad.1009902.
Article
PubMed Central
CAS
PubMed
Google Scholar
Braun EL, Fuge EK, Padilla PA, Werner-Washburne M: A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. J Bacteriol. 1996, 178: 6865-6872.
PubMed Central
CAS
PubMed
Google Scholar
Valerie K, Povirk LF: Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003, 22: 5792-5812. 10.1038/sj.onc.1206679.
Article
CAS
PubMed
Google Scholar
Tebbs RS, Zhao Y, Tucker JD, Scheerer JB, Siciliano MJ, Hwang M, Liu N, Legerski RJ, Thompson LH: Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc Natl Acad Sci USA. 1995, 92: 6354-6358.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arnaudeau C, Lundin C, Helleday T: DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol. 2001, 307: 1235-1245. 10.1006/jmbi.2001.4564.
Article
CAS
PubMed
Google Scholar
Helleday T, Arnaudeau C, Jenssen D: A partial hprt gene duplication generated by non-homologous recombination in V79 Chinese hamster cells is eliminated by homologous recombination. J Mol Biol. 1998, 279: 687-694. 10.1006/jmbi.1998.1809.
Article
CAS
PubMed
Google Scholar
Banath JP, Olive PL: Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 2003, 63: 4347-4350.
CAS
PubMed
Google Scholar
Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA, Pilch DR, Rogakou EP, Celeste A, Chen HT, Nussenzweig A, Aladjem MI, Bonner WM, Pommier Y: Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem. 2003, 278: 20303-20312. 10.1074/jbc.M300198200.
Article
CAS
PubMed
Google Scholar
Zhou N, Xiao H, Li TK, Nur-E-Kamal , Liu LF: DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem. 2003, 278: 29532-29537. 10.1074/jbc.M301877200.
Article
CAS
PubMed
Google Scholar
van Hille B, Clerc X, Creighton AM, Hill BT: Differential expression of topoisomerase I and RAD52 protein in yeast reveals new facets of the mechanism of action of bisdioxopiperazine compounds. Br J Cancer. 1999, 81: 800-807. 10.1038/sj.bjc.6690767.
Article
CAS
PubMed
Google Scholar
Ishida R, Hamatake M, Wasserman RA, Nitiss JL, Wang JC, Andoh T: DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res. 1995, 55: 2299-2303.
CAS
PubMed
Google Scholar
Lundin C, Schultz N, Arnaudeau C, Mohindra A, Hansen LT, Helleday T: RAD51 is involved in repair of damage associated with DNA replication in mammalian cells. J Mol Biol. 2003, 328: 521-535. 10.1016/S0022-2836(03)00313-9.
Article
CAS
PubMed
Google Scholar
Hansen LT, Lundin C, Spang-Thomsen M, Petersen LN, Helleday T: The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int J Cancer. 2003, 105: 472-479. 10.1002/ijc.11106.
Article
CAS
PubMed
Google Scholar
Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW: A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood. 2004, 103: 4659-4665. 10.1182/blood-2003-07-2527.
Article
CAS
PubMed
Google Scholar
Adachi N, Iiizumi S, So S, Koyama H: Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage. Biochem Biophys Res Commun. 2004, 318: 856-861. 10.1016/j.bbrc.2004.04.099.
Article
CAS
PubMed
Google Scholar
Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW: A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity. 1998, 9: 367-376. 10.1016/S1074-7613(00)80619-6.
Article
CAS
PubMed
Google Scholar
Jin S, Inoue S, Weaver DT: Differential etoposide sensitivity of cells deficient in the Ku and DNA-PKcs components of the DNA-dependent protein kinase. Carcinogenesis. 1998, 19: 965-971. 10.1093/carcin/19.6.965.
Article
CAS
PubMed
Google Scholar
Caldecott K, Banks G, Jeggo P: DNA double-strand break repair pathways and cellular tolerance to inhibitors of topoisomerase II. Cancer Res. 1990, 50: 5778-5783.
CAS
PubMed
Google Scholar
Jeggo PA, Caldecott K, Pidsley S, Banks GR: Sensitivity of Chinese hamster ovary mutants defective in DNA double strand break repair to topoisomerase II inhibitors. Cancer Res. 1989, 49: 7057-7063.
CAS
PubMed
Google Scholar
Deming PB, Cistulli CA, Zhao H, Graves PR, Piwnica-Worms H, Paules RS, Downes CS, Kaufmann WK: The human decatenation checkpoint. Proc Natl Acad Sci USA. 2001, 98: 12044-12049. 10.1073/pnas.221430898.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lundin C, Erixon K, Arnaudeau C, Schultz N, Jenssen D, Meuth M, Helleday T: Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol. 2002, 22: 5869-5878. 10.1128/MCB.22.16.5869-5878.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jensen PB, Sehested M: DNA topoisomerase II rescue by catalytic inhibitors: a new strategy to improve the antitumor selectivity of etoposide. Biochem Pharmacol. 1997, 54: 755-759. 10.1016/S0006-2952(97)00116-0.
Article
CAS
PubMed
Google Scholar
Sehested M, Jensen PB: Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochem Pharmacol. 1996, 51: 879-886. 10.1016/0006-2952(95)02241-4.
Article
CAS
PubMed
Google Scholar
Holm B, Jensen PB, Sehested M: ICRF-187 rescue in etoposide treatment in vivo. A model targeting high-dose topoisomerase II poisons to CNS tumors. Cancer Chemother Pharmacol. 1996, 38: 203-209. 10.1007/s002800050472.
Article
CAS
PubMed
Google Scholar
Holm B, Sehested M, Jensen PB: Improved targeting of brain tumors using dexrazoxane rescue of topoisomerase II combined with supralethal doses of etoposide and teniposide. Clin Cancer Res. 1998, 4: 1367-1373.
CAS
PubMed
Google Scholar
Ishida R, Iwai M, Hara A, Andoh T: The combination of different types of antitumor topoisomerase II inhibitors, ICRF-193 and VP-16, has synergistic and antagonistic effects on cell survival, depending on treatment schedule. Anticancer Res. 1996, 16: 2735-2740.
CAS
PubMed
Google Scholar
Hasinoff BB, Yalowich JC, Ling Y, Buss JL: The effect of dexrazoxane (ICRF-187) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs. 1996, 7: 558-567.
Article
CAS
PubMed
Google Scholar
Wessel I, Jensen LH, Jensen PB, Falck J, Rose A, Roerth M, Nitiss JL, Sehested M: Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform. Cancer Res. 1999, 59: 3442-3450.
CAS
PubMed
Google Scholar
Sehested M, Wessel I, Jensen LH, Holm B, Oliveri RS, Kenwrick S, Creighton AM, Nitiss JL, Jensen PB: Chinese hamster ovary cells resistant to the topoisomerase II catalytic inhibitor ICRF-159: a Tyr49Phe mutation confers high-level resistance to bisdioxopiperazines. Cancer Res. 1998, 58: 1460-1468.
CAS
PubMed
Google Scholar
Ishida R, Miki T, Narita T, Yui R, Sato M, Utsumi KR, Tanabe K, Andoh T: Inhibition of intracellular topoisomerase II by antitumor bis(2,6-dioxopiperazine) derivatives: mode of cell growth inhibition distinct from that of cleavable complex-forming type inhibitors. Cancer Res. 1991, 51: 4909-4916.
CAS
PubMed
Google Scholar
Tanabe K, Ikegami Y, Ishida R, Andoh T: Inhibition of topoisomerase II by antitumor agents bis(2,6-dioxopiperazine) derivatives. Cancer Res. 1991, 51: 4903-4908.
CAS
PubMed
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW, et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901.
Article
CAS
PubMed
Google Scholar
Hsiung Y, Jannatipour M, Rose A, McMahon J, Duncan D, Nitiss JL: Functional expression of human topoisomerase II alpha in yeast: mutations at amino acids 450 or 803 of topoisomerase II alpha result in enzymes that can confer resistance to anti-topoisomerase II agents. Cancer Res. 1996, 56: 91-99.
CAS
PubMed
Google Scholar
Gietz D, St Jean A, Woods RA, Schiestl RH: Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992, 20: 1425-
Article
PubMed Central
CAS
PubMed
Google Scholar
Jensen LH, Renodon-Corniere A, Wessel I, Langer SW, Sokilde B, Carstensen EV, Sehested M, Jensen PB: Maleimide is a potent inhibitor of topoisomerase II in vitro and in vivo: a new mode of catalytic inhibition. Mol Pharmacol. 2002, 61: 1235-1243. 10.1124/mol.61.5.1235.
Article
CAS
PubMed
Google Scholar
Schmitt ME, Brown TA, Trumpower BL: A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990, 18: 3091-3092.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li C, Wong WH: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001, 98: 31-36. 10.1073/pnas.011404098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
de Leij L, Postmus PE, Buys CH, Elema JD, Ramaekers F, Poppema S, Brouwer M, van der Veen AY, Mesander G, and The TH: Characterization of three new variant type cell lines derived from small cell carcinoma of the lung. Cancer Res. 1985, 45: 6024-6033.
CAS
PubMed
Google Scholar