Adjei AA, Erlichman C, Davis JN, Cutler DL, Sloan JA, Marks RS, Hanson LJ, Svingen PA, Atherton P, Bishop WR, Kirschmeier P, Kaufmann SH: A Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res. 2000, 60: 1871-1877.
CAS
PubMed
Google Scholar
Crul M, de Klerk GJ, Beijnen JH, Schellens JHM: Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs. 2001, 12: 163-184. 10.1097/00001813-200103000-00001.
Article
CAS
PubMed
Google Scholar
Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J: Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood. 2001, 97: 3361-3369. 10.1182/blood.V97.11.3361.
Article
CAS
PubMed
Google Scholar
Punt CJ, van Maanen L, Bol CJ, Seifert WF, Wagener DJ: Phase I and pharmacokinetic study of the orally administered farnesyl transferase inhibitor R115777 in patients with advanced solid tumors. Anticancer Drugs. 2001, 12: 193-197. 10.1097/00001813-200103000-00003.
Article
CAS
PubMed
Google Scholar
Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW, Piotrovsky VK, Chiao J, Belly RT, Todd A, Kopp WC, Kohler DR, Chow C, Noone M, Hakim FT, Larkin G, Gress RE, Nussenblatt RB, Kremer AB, Cowan KH: Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol. 2000, 18: 927-941.
CAS
PubMed
Google Scholar
Mailliet P, Riou J-F, Duchesne M, Lelièvre Y, Lavayre J, Bourzat J-D, Capet M, Chevé M, Commerçon A, Martin M, Thompson F, Dereu N, Lavelle F: Benzo(f)perhydroisoindoles: a series of potent and selective inhibitors of the farnesylation of Ki-Ras. Proc Amer Assoc Cancer Res. 1998, 39: 270-
Google Scholar
Bos JL: Ras oncogenes in human cancer: a review. Cancer Res. 1989, 49: 4682-4689.
CAS
PubMed
Google Scholar
Marshall CJ: Protein-prenylation: a mediator of protein-protein interactions. Science. 1993, 259: 1865-1866.
Article
CAS
PubMed
Google Scholar
Zhang FL, Casey PJ: Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996, 65: 241-269. 10.1146/annurev.bi.65.070196.001325.
Article
CAS
PubMed
Google Scholar
James GL, Goldstein JL, Brown MS: Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem. 1995, 270: 6221-6226. 10.1074/jbc.270.43.25827.
Article
CAS
PubMed
Google Scholar
Jackson JH, Cochrane CG, Bourne JR, Solski PA, Buss JE, Der CJ: Farnesol modification of Kirsten-ras 4B protein is essential for transformation. Proc Natl Acad Sci USA. 1990, 87: 3042-3046.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ: Isoprenoid addition to ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA. 1992, 89: 6403-6407.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lowy DR, Willumsen BM: Function and regulation of ras. Annu Rev Biochem. 1993, 62: 851-891. 10.1146/annurev.bi.62.070193.004223.
Article
CAS
PubMed
Google Scholar
Gibbs JB, Oliff A, Kohl NE: Farnesyltransferase inhibitors: ras research yields a potential cancer therapeutic. Cell. 1994, 77: 175-178.
Article
CAS
PubMed
Google Scholar
Tamanoi F: Inhibitors of ras farnesyltransferases. Trends Biochem Sci. 1993, 18: 349-353. 10.1016/0968-0004(93)90072-U.
Article
CAS
PubMed
Google Scholar
Miquel K, Pradines A, Sun J, Qian Y, Hamilton AD, Sebti SM, Favre G: GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 1997, 57: 1846-1850.
CAS
PubMed
Google Scholar
Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P: Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F, and alter the association of CENP-E with the microtubules. J Biol Chem. 2000, 275: 30451-30457. 10.1074/jbc.M003469200.
Article
CAS
PubMed
Google Scholar
Sinensky M: Recent advances in the study of prenylated proteins. Biochim Biophys Acta. 2000, 1484: 93-106. 10.1016/S1388-1981(00)00009-3.
Article
CAS
PubMed
Google Scholar
Cox AD: Farnesyltransferase inhibitors: potential role in the treatment of cancer. Drugs. 2001, 61: 723-732.
Article
CAS
PubMed
Google Scholar
Gibbs JB: Ras C-terminal processing enzymes-new drug targets?. Cell. 1991, 65: 1-4.
Article
CAS
PubMed
Google Scholar
Glomset JA, Gelb MH, Farnsworth CC: Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci. 1990, 15: 139-142. 10.1016/0968-0004(90)90213-U.
Article
CAS
PubMed
Google Scholar
Vrignaud P, Bello A, Bissery MC, Jenkins R, Hasnain A, Mailliet P, Lavelle F: RPR130401 a non-peptidomimetic farnesyltransferase inhibitor with in vivo activity. Proc Amer Assoc Cancer Res. 1998, 39: 270-
Google Scholar
Yokoyama K, Goodwin GW, Gomashchi F, Glomset JA, Gelb MH: A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA. 1991, 88: 5302-5306.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mazet JL, Padieu M, Osman H, Maume G, Mailliet P, Dereu N, Hamilton AD, Lavelle F, Sebti SM, Maume BF: Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)-S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett. 1999, 460: 235-240. 10.1016/S0014-5793(99)01355-1.
Article
CAS
PubMed
Google Scholar
Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL, Crowell DN: Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett. 1996, 110: 49-55. 10.1016/S0304-3835(96)04459-X.
Article
CAS
PubMed
Google Scholar
Shirasawa S, Furuse M, Yokoyama N, Sasazuki T: Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993, 260: 85-88.
Article
CAS
PubMed
Google Scholar
Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M: Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer. 1994, 58: 185-191.
Article
CAS
PubMed
Google Scholar
Valenzuela DM, Groffen J: Four human carcinoma cell lines with novel mutations in position 12 of c-K-ras oncogene. Nucleic Acids Res. 1986, 14: 843-852.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song SY, Meszoely IM, Coffey RJ, Pietenpol JA, Leach SD: K-Ras-independent effects of the farnesyl transferase inhibitor L-744,832 on cyclin B1/Cdc2 kinase activity, G2/M cell cycle progression and apoptosis in human pancreatic ductal adenocarcinoma cells. Neoplasia. 2000, 2: 261-272. 10.1038/sj.neo.7900088.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM: The farnesyltransferase inhibitor, FTI-blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem. 2153, 276: 16161-16167. 10.1074/jbc.M006213200.
Article
Google Scholar
Lebowitz PF, Davide JP, Prendergast GC: Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol. 1995, 15: 6613-6622.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prendergast GC: Farnesyltransferase inhibitors: antineoplastic mechanism and clinical prospect. Curr Opin cell Biol. 2000, 12: 166-173. 10.1016/S0955-0674(99)00072-1.
Article
CAS
PubMed
Google Scholar
Prendergast GC, Davide JP, de Solms SJ, Giuliani EA, Graham SL, Gibbs JB, Oliff A, Kohl NE: Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol. 1994, 14: 4193-4202.
Article
PubMed Central
CAS
PubMed
Google Scholar
Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ: The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA. 1994, 91: 5124-5128.
Article
PubMed Central
CAS
PubMed
Google Scholar
Denko NC, Stringer J, Wani M, Stambrook PJ: Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-Ras. Somatic Cell Mol Genet. 1995, 21: 241-253.
Article
CAS
Google Scholar
Kowluru A: Evidence for the carboxyl methylation of nuclear lamin-B in the pancreatic beta cell. Biochem Biophys Res Commun. 2000, 268: 249-254. 10.1006/bbrc.2000.2107.
Article
CAS
PubMed
Google Scholar
Oberhammer FA, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M: Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J Cell Biol. 1994, 126: 827-837.
Article
CAS
PubMed
Google Scholar
Kohl NE, Mosser SD, de Solms SJ, Giuliani EA, Pompliano DL, Graham SL, Smith RL, Scolnick EM, Oliff A, Gibbs JB: Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science. 1993, 260: 1934-1397.
Article
CAS
PubMed
Google Scholar
Lebowitz PF, Prendergast GC: Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene. 1998, 17: 1439-1445. 10.1038/sj/onc/1202175.
Article
CAS
PubMed
Google Scholar
Servais P, Gulbis B, Fokan D, Galand P: Effects of the farnesyltransferase inhibitor UCF-1C/Manumycin on growth and p21-Ras post-translational processing in NIH3T3 cells. Int J Cancer. 1998, 76: 601-608. 10.1002/(SICI)1097-0215(19980518)76:4<601::AID-IJC25>3.0.CO;2-8.
Article
CAS
PubMed
Google Scholar
Du W, Lebowitz F, Prendergast GC: Cell growth inhibition of farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol. 1999, 19: 1831-1840.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ashar HR, James L, Gray K, Carr D, McGuirk M, Maxwell E, Black S, Armstrong L, Doll RJ, Taveras AG, Bishop WR, Kirschmeier P: The farnesyl transferase inhibitor SCH 66336 induces a G(2) → M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res. 2001, 262: 17-27. 10.1006/excr.2000.5076.
Article
CAS
PubMed
Google Scholar
Galli I, Uchiyama M, Wang TS: DNA replication and order of cell cycle events: a role for protein isoprenylation?. Biol Chem. 1997, 378: 963-973.
Article
CAS
PubMed
Google Scholar
Farnsworth CC, Wolda SL, Gelb MH, Glomset JA: Human lamin B contains a farnesylated cysteine residue. J Biol Chem. 1989, 264: 20422-20429.
PubMed Central
CAS
PubMed
Google Scholar
Kitten GT, Nigg EA: The CAAX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J Cell Biol. 1991, 113: 13-23.
Article
CAS
PubMed
Google Scholar
Mical TI, Monteiro MJ: The role of sequences unique to nuclear intermediate filaments in the targeting and assembly of human lamin B: evidence for lack of interaction of lamin B with its putative receptor. J Cell Sci. 1998, 111: 3471-3485.
CAS
PubMed
Google Scholar
Hennekes H, Nigg EA: The role of isoprenylation in membrane attachment of nuclear lamins: a single point mutation prevents proteolytic cleavage of the lamin A precursor and confers membrane binding properties. J Cell Sci. 1994, 107: 1019-1029.
CAS
PubMed
Google Scholar
Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH: Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res. 2000, 6: 2318-2325.
CAS
PubMed
Google Scholar
Fitzgerald TJ, Daugherty C, Kase K, Rothstein LA, McKenna M, Greenberger JS: Activated human N-ras oncogene enhances X-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Implications for increased therapeutic ratio of low dose rate irradiation. Am J Clin Oncol. 1985, 8: 517-522.
Article
CAS
PubMed
Google Scholar
Sklar MD: The ras oncogenes increase the intrinsic resistance of NIH3T3 cells to ionizing radiation. Science. 1988, 239: 645-647.
Article
CAS
PubMed
Google Scholar
Harris JF, Chambers AF, Tam ASK: Some ras-transformed cells have increased radiosensitivity and decreased repair of sublethal radiation damage. Somatic Cell Mol Genet. 1990, 16: 39-48.
Article
CAS
Google Scholar
Pirollo KF, Tong Y-A, Villegas Z, Chen Y, Chang EH: Oncogene-transformed NIH3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res. 1993, 135: 234-243.
Article
CAS
PubMed
Google Scholar
McKenna WG, Weiss MC, Bakanauskas VJ, Sandler H, Kelsten ML, Biaglow J, Tuttle SW, Endlich B, Ling CC, Muschel RJ: The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys. 1990, 18: 849-859.
Article
CAS
PubMed
Google Scholar
McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, Muschel RJ: Synergistic effect of the v-myc oncogene with H-ras radioresistance. Cancer Res. 1990, 50: 97-102.
CAS
PubMed
Google Scholar
Iliakis G, Metzger L, Muschel RJ, McKenna WG: Induction and repair of DNA double strand breaks in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res. 1990, 50: 6575-6579.
CAS
PubMed
Google Scholar
Hermens AF, Bentvelzen PAJ: Influence of the H-ras oncogene on radiation responses of a rat rhabdomyosarcoma cell line. Cancer Res. 1992, 52: 3073-3082.
CAS
PubMed
Google Scholar
Ong A, Li WX, Ling CC: Low-dose-rate irradiation of rat embryo cells containing the Ha-ras oncogene. Radiat Res. 1993, 134: 251-255.
Article
CAS
PubMed
Google Scholar
McKenna WG, Bernhard EJ, Markiewicz DA, Rudoltz MS, Maity A, Muschel RJ: Regulation of radiation-induced apoptosis in oncogene-transfected fibroblasts: influence of H-ras on the G2 delay. Oncogene. 1996, 12: 237-245.
CAS
PubMed
Google Scholar
Ling CC, Endlich B: Radioresistance induced by oncogenic transformation. Radiat Res. 1989, 120: 267-279.
Article
CAS
PubMed
Google Scholar
McKenna WG, Iliakis G, Weiss MC, Bernhard EJ, Muschel RJ: Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res. 1991, 125: 283-287.
Article
CAS
PubMed
Google Scholar
Chen CH, Zhang J, Ling CC: Transfected c-myc and c-Ha-ras modulate radiation-induced apoptosis in rat embryo cells. Radiat Res. 1994, 139: 307-315.
Article
CAS
PubMed
Google Scholar
Miller AC, Kariko K, Myers CE, Clark EP, Samid D: Increased radioresistance of EJ-ras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Int J Cancer. 1993, 53: 302-307.
Article
CAS
PubMed
Google Scholar
Bruyneel EA, Storme GA, Schallier DCC, Van den Berge DL, Hilgard P, Mareel MM: Evidence for abrogation of oncogene-induced radioresistance of mammary cancer cells by hexadecylphosphocholine in vitro . Eur J Cancer. 1993, 29A: 1958-1963.
Article
CAS
PubMed
Google Scholar
Grant ML, Bruton RK, Byrd J, Gallimore PH, Steele JC, Taylor AML, Grand RJA: Sensitivity to ionising radiation of transformed human cells containing mutant ras genes. Oncogene. 1990, 5: 1159-1164.
CAS
PubMed
Google Scholar
Alapetite C, Baroche C, Remvikos Y, Goubin G, Moustacchi E: Studies on the influence of the presence of an activated ras oncogene on the in vitro radiosensitivity of human mammary epithelial cells. Int J Radiat Biol. 1991, 59: 385-396.
Article
CAS
PubMed
Google Scholar
Mendonca MS, Boukamp P, Stanbridge EJ, Redpath JL: The radiosensitivity of human keratinocytes: influence of activated c-H-ras oncogene and tumorigenicity. Int J Radiat Biol. 1991, 59: 1195-1206.
Article
CAS
PubMed
Google Scholar
Minarik L, Hall E, Miller R: Tumorigenicity, oncogene transfection, and radiosensitivity. Cancer J Sci Am. 1996, 2: 351-
CAS
PubMed
Google Scholar
Polischouk AG, Scotnikova OI, Sergeeva NS, Zharinov GM, Lewensohn R, Zhivotovsky B: Response to radiotherapy of human uterine cervix carcinoma is not correlated with rearrangements of the Ha-ras-1 and/or c-myc genes. Eur J Cancer. 1997, 33: 942-949. 10.1016/S0959-8049(97)00024-5.
Article
CAS
PubMed
Google Scholar
Bernhard EJ, Stanbridge EJ, Gupta S, Gupta AK, Soto D, Bakanauskas VJ, Cerniglia GJ, Muschel RJ, McKenna WG: Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines. Cancer Res. 2000, 60: 6597-6600.
CAS
PubMed
Google Scholar
Pirollo KF, Hao Z, Rait A, Ho CW, Chang EH: Evidence supporting a signal transduction pathway leading to the radiation-resistant phenotype in human tumor cells. Biochem Biophys Res Commun. 1997, 230: 196-201. 10.1006/bbrc.1996.5922.
Article
CAS
PubMed
Google Scholar
Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ, Muschel RJ, McKenna WG: The Ras radiation resistance pathway. Cancer Res. 2001, 61: 4278-4282.
CAS
PubMed
Google Scholar
Bernhard EJ, Kao G, Cox AD, Sebti SM, Hamilton AD, Muschel RJ, McKenna WG: The farnesyltransferase inhibitor FTI-277 radiosensitizes H-ras-transformed rat embryo fibroblasts. Cancer Res. 1996, 56: 1727-1730.
CAS
PubMed
Google Scholar
Bernhard EJ, McKenna WG, Hamilton AD, Sebti SM, Qian Y, Wu J-M, Muschel RJ: Inhibiting ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res. 1998, 58: 1754-1761.
CAS
PubMed
Google Scholar
Cohen-Jonathan E, Toulas C, Ader I, Monteil S, Allal C, Bonnet J, Hamilton AD, Sebti SM, Daly-Schveitzer N, Favre G: The farnesyltransferase inhibitor FTI-277 suppresses the 24-kDa FGF2-induced radioresistance in HeLa cells expressing wild-type RAS. Radiat Res. 1999, 152: 404-411.
Article
CAS
PubMed
Google Scholar
Balosso J, Minne J-F, Touboul E: Late complications of chemoradiotherapeutic combinations: fundamental aspects and clinical experience. Bull Cancer Radiother. 1995, 82: 101-112.
Article
CAS
PubMed
Google Scholar
Cohen-Jonathan E, Muschel RJ, McKenna WG, Evans SM, Cerniglia G, Mick R, Kusewitt D, Sebti SM, Hamilton AD, Oliff A, Kohl N, Gibbs JB, Bernhard EJ: Farnesyltransferase inhibitors potentiate the antitumor effect of radiation on a human tumor xenograft expressing activated HRAS. Radiat Res. 2000, 154: 125-132.
Article
CAS
PubMed
Google Scholar
Mailliet P, Laoui A, Bourzat J-D, Capet M, Chevé M, Commerçon A, Dereu N, LeBrun A, Martin J-P, Peyronel J-F, Salagnad C, Thompson F, Zucco M, Guitton J-D, Pantel G, Bissery M-C, Brealey C, Lavayre J, Lelièvre Y, Riou J-F, Vrignaud P, Duchesne M, Lavelle F: I. Target for Cancer and Cardiovascular Therapy. In: Farnesyl Transferase and Geranylgeranyl Transferase. Edited by: Sebti SM. 1999, Humana Press
Google Scholar
Demarcq C, Bastian G, Remvikos Y: BrdUrd/DNA flow cytometry analysis demonstrates cis-diaminedichloroplatinium (II)-induced multiple cell cycle modifications on human lung carcinoma cells. Cytometry. 1992, 13: 416-422.
Article
CAS
PubMed
Google Scholar
Mies B, Rottner K, Small JV: Multiple immunofluorescence microscopy of the cytoskeleton. In: Cell biology: a laboratory handbook. Edited by: Celis JE. 1998, Academic Press, 2: 469-476. second
Google Scholar
Rockwell S: Effects of clumps and clusters on survival measurements with clonogenic assays. Cancer Res. 1985, 45: 1601-1607.
CAS
PubMed
Google Scholar
Hall A: Ras and GAP – Who's controlling whom?. Cell. 1990, 61: 921-923.
Article
CAS
PubMed
Google Scholar
Little JB, Hahn GM, Frindel E, Tubiana M: Repair of potentially lethal radiation damage in vitro and in vivo. Radiology. 1973, 106: 689-694.
Article
CAS
PubMed
Google Scholar