BMC Pharmacology

Poster presentation

Open Access

Nitroxyl, the novel redox sibling of NO, suppresses cerebrovascular NADPH oxidase

Barbara Kemp-Harper*¹, Ravina Ravi¹, Michelle Bullen¹, Rebecca Ritchie², Christopher Sobey¹ and Alyson Miller¹

Address: ¹Department of Pharmacology, Monash University, Clayton, Vic 3800, Australia and ²Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne, Vic 8008, Australia

Email: Barbara Kemp-Harper* - barbara.kemp@med.monash.edu.au

* Corresponding author

from 4th International Conference of cGMP Generators, Effectors and Therapeutic Implications Regensburg, Germany. 19–21 June 2009

Published: 11 August 2009

BMC Pharmacology 2009, 9(Suppl 1):P31 doi:10.1186/1471-2210-9-S1-P31

This abstract is available from: http://www.biomedcentral.com/1471-2210/9/S1/P31

© 2009 Kemp-Harper et al; licensee BioMed Central Ltd.

Background

Nitroxyl (HNO), the reduced and protonated congener of nitric oxide (NO), is emerging as a novel entity with distinct pharmacology and therapeutic advantages over NO• [1]. Importantly, HNO has vasoprotective actions with the potential to serve as an antioxidant. Here we explored the ability of HNO to modulate cerebrovascular NADPH oxidase activity, a major source of superoxide (·O₂·) in the vasculature.

Materials and methods

Intracranial (pooled middle cerebral and basilar) and extracranial (carotid) cerebral arteries from male C57BL/6J mice were treated with angiotensin II (10 nM) acutely (30 min) and chronically (24 h), respectively, in the absence and presence of the HNO donor, Angeli's salt (AS). NADPH (100 μ M)-stimulated \cdot O₂- production was then measured using lucigenin (5 μ M)-enhanced chemiluminescence.

Results

AS (1 μ M) did not scavenge \cdot O₂· generated in a cell free xanthine (100 μ M)/xanthine oxidase (0.05 U/ml) activity assay (control: 447.9 \pm 90.8; AS 507.1 \pm 113.3 counts, n = 4). In contrast, acute and chronic treatment with AS (0.01–1 μ M) caused a concentration-dependent decrease in NADPH oxidase-derived \cdot O₂· production by intracranial and extracranial cerebral arteries, respectively (carotid

 0.59 ± 0.05 ; AS 0.1 μ M 0.33 \pm 0.08; AS 1 μ M 0.16 \pm 0.03 10^3 counts/s/mg, P < 0.05, n = 8). The effects of AS were reversed by the HNO scavenger, L-cysteine (3 mM) but unchanged in the presence of the NO $^{\bullet}$ scavenger carboxy-PTIO (200 μ M) and sGC inhibitor, ODQ (10 μ M).

Conclusion

HNO suppresses vascular NADPH-oxidase activity both acutely and chronically, possibly via a cGMP-independent mechanism. Such antioxidant actions of HNO may confer therapeutic advantages in the treatment of cerebrovascular disorders.

References

 Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK: Nitroxyl (HNO): the Cinderella of the nitric oxide story. Trends Pharmacol Sci 2008, 29:601-8.