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Abstract

Background: Small molecules that bind reversibly to DNA are among the antitumor drugs
currently used in chemotherapy. In the pursuit of a more rational approach to cancer
chemotherapy based upon these molecules, it is necessary to exploit the interdependency between
DNA-binding affinity, sequence selectivity and cytotoxicity. For drugs binding noncovalently to
DNA, it is worth exploring whether molecular descriptors, such as their molecular weight or the
number of potential hydrogen acceptors/donors, can account for their DNA-binding affinity and
cytotoxicity.

Results: Fifteen antitumor agents, which are in clinical use or being evaluated as part of the
National Cancer Institute's drug screening effort, were analyzed in silico to assess the contribution
of various molecular descriptors to their DNA-binding affinity, and the capacity of the descriptors
and DNA-binding constants for predicting cell cytotoxicity. Equations to predict drug-DNA binding
constants and growth-inhibitory concentrations were obtained by multiple regression following
rigorous statistical procedures.

Conclusion: For drugs binding reversibly to DNA, both their strength of binding and their
cytoxicity are fairly predicted from molecular descriptors by using multiple regression methods.
The equations derived may be useful for rational drug design. The results obtained agree with that
compounds more active across the National Cancer Institute's 60-cell line data set tend to have
common structural features.

can be quantified for any drug by means of the equilib-
rium binding constant (Keq). In the determination of the

Background
DNA-binding molecules represent a valuable portion of

the clinically useful antitumor drugs [1,2]. Most of the
drugs than bind noncovalently to DNA, such as actinomy-
cin D and several anthracyclines [1,3], interact selectively
with the nucleic acid along the minor groove or by inter-
calation. The binding mode depends on structural fea-
tures of these molecules and on the DNA sequences they
recognize [4-6]. The strength of reversible binding to DNA

binding constant, the primary results obtained from what-
ever the technique used and the analysis of the data are
not straightforward as there is no a single protocol that
might be applied to every 'binding problem' [7]. There-
fore, DNA-binding data, which may be used to correlate
noncovalent drug-DNA interactions with cytotoxicity
data, should be regarded as 'approximate values' com-
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pared to the more accurate measurements that are availa-
ble on some physicochemical molecular descriptors for
these molecules, such as molecular weight, hydrophobic-
ity or the number of hydrogen bond donors.

The analysis of antitumor drugs based on an evaluation of
cytotoxicity data may provide new insights into their
mechanism of action [2,8]. The 60 human cancer cell
lines used in the screening of compounds at the National
Cancer Institute (NCI) provide basically the G5, (50%
growth-inhibitory concentration) as an index of cytotoxic-
ity or cytostasis. The NCI cell line data set is a publicly
available database that contains cellular assay screening
data for over 40000 compounds tested in 60 human
tumor cell lines (referred to hereafter as the NCI-60 cell
lines). The database also contains microarray gene expres-
sion data, thus providing an excellent information
resource particularly for the analysis of links between
chemical, biological, and genomic information [2,8-11].

While it is worth characterizing cancer cells to predict
chemosensitivity to any particular drug [12], and to link
changes in gene expression to cytotoxicity [8,13-15] it is
also of utmost importance a deeper understanding of the
mechanism of action of drugs, which includes the dissec-
tion of forces driving their noncovalent binding to DNA,
and to use this information to help in the development of
new anti-cancer agents with higher activity [9,16,17].

This paper presents the analysis of the relationship
between various physicochemical descriptors for drugs,
and uses these descriptors to predict both the strength of

Table I: Molecular descriptors for noncovalent DNA-binding drugsa.
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noncovalent binding to DNA and the biological activity.
Although there are previous studies considering that large
and more complex molecules are more potent antitumor
agents [9], there is no clear association between biological
potency and the strength of reversible binding to DNA,
while there are some examples illustrating that changes in
DNA binding among structurally related molecules can be
accompanied by abrupt changes in biological activity
[18]. The strategy followed here utilizes DNA-binding
constants taken from the ample, and sometimes contra-
dictory, bibliography on DNA-binding drugs. The Keq val-
ues, shown as logarithmic-transformed values logKeq in
Table 1, were selected following the same criteria used
elsewhere [5] to analyze the signature for drug-DNA bind-
ing modes.

It was feasible to achieve the required robustness for an in
silico study based on a relatively small sample population
by using different and, to some extent, complementary
approaches under a careful statistical control. It was,
therefore, possible to derive equations to predict the
strength of binding to DNA and the biological activity
(cytotoxicity) by multiple regression methods using a
combination of structure-based molecular descriptors and
some other physicochemical descriptors as predicting var-
iables. Moreover, factor analysis was used to uncover the
latent structure (dimensions) of the molecular descrip-
tors. Principal component analysis is exposed as a valua-
ble tool for predicting of redundancy of descriptive
elements in drug design. Both the strength of noncovalent
binding to DNA and cytotoxicity might be predicted, even
though not perfectly, from molecular descriptors.

NSC number  DNA binding Mw  XlogP

Actinomycin D 3053 Intercalation 1255 1.6
Bleomycin 125066 Intercalation 1416 -1.9
Chartreusin 5159 Intercalation 641 2.6
Chromomycin 58514 minor-groove 1185 -0.6
Daunorubicin 82151 intercalation 528 0.1

Distamycin A 82150 minor-groove 482 0.2
Doxorubicin 123127 intercalation 544 -0.5
Echinomycin 526417 bis-intercalation 1101 25
Elsamicin A 369327 intercalation 654 29
Epirubicin 256942 intercalation 544 -0.5
Ethidium 268986 intercalation 394 43
m-AMSA 249992 intercalation 394 38
Mitoxantrone 301739 intercalation 445 -3.1
Mithramycin A 24559 minor-groove 1085 -04
Netropsin 3067 minor-groove 431 -1.7

HbD HbA PSA Complexity logKeq Lipinski Glg,
5 18 356 3030 5.38 2 8.7
20 30 627 2580 5.57 I 5.9
5 14 200 1150 5.45 2 57
8 26 359 2480 441 | 8.3
5 I 186 960 6.65 2 7.1
6 9 181 825 6.89 3 4.1
6 12 206 977 6.30 | 7.2
4 16 302 2200 5.52 2 8.1
5 14 206 1210 6.54 2 7.5
6 12 206 977 6.57 2 6.7
2 3 56 419 4.90 4 5.5
2 6 80 601 4.30 4 6.2
8 10 163 571 6.78 3 7.2
Il 24 358 1940 5.08 | 7.9
7 10 211 723 6.40 2 4.0

aMw: Molecular weight, XlogP: partition coefficient that measures the differential solubility of a compound in two solvents, HbD: number of
hydrogen bond donors in the structure, HbA: number of hydrogen bond acceptors, PSA: polar surface area (in A2). Complexity: a rough estimate of
how complicated a structure is. Both the elements contained and the displayed structural features including symmetry are considered. log Keq:
logarithmic-transformed equilibrium binding constant for a drug-DNA complex (Keq in M-!). Lipinski: Lipinski's score, the rule-of-five value used to
measure bioavailability. Gls is used in place of -log(Gls,), the negative logarithm of the average drug concentration that inhibits cell growth in the
NCI-60 cell lines (August 2008 data) as a measure of cytotoxicity or cytostasis.
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Methods

Noncovalent DNA-binding drugs: A database of molecular
descriptors and growth inhibition response

The antitumor drugs used in the present analysis were
selected by two complementary criteria. First, they are
drugs binding noncovalently to DNA whose binding
affinity, measured as the equilibrium binding constant
Keq, as well as their mechanism of binding--intercalation
or minor-groove binding--have been fully established pre-
viously. Second, their cytotoxicity assays using the NCI-60
cell lines are publicly available through the Developmen-
tal Therapeutics Program NCI/NIH database at: http://
dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp  (cancer
screen data, August 2008). For the sake of convenience,
Gl;5,, the 50% cancer cell growth inhibition concentration
for any particular cell line, a measure of cytotoxicity or
cytostasis, is used to indicate the -log(Gl);, provided by
the database. The GI;, measures shown in Table 1 are the
arithmetic mean of the GI;, measurements in these 60 cell
lines.

Common molecular descriptors for all the drugs were
retrieved from the PubChem compound web site: http://
pubchem.ncbi.nlm.nih.gov. Lipinski's scores were
retrieved from the ChemDB (NIAID) database http://
chemdb2.niaid.nih.gov. The drug-DNA equilibrium
binding constants (Keq) were obtained from a survey of
the vast, and, sometimes, contradictory information
found in the bibliography (see Results). The equilibrium
binding constants entered in Table 1 correspond almost
exclusively to those acquired under similar experimental
conditions: 20-25°C, pH 7 and 150-200 mM NaCl, in
accordance with an uniform criteria used elsewhere to
establish a thermodynamic signature for the drug-DNA
mode of interaction [5]. Throughout this paper the loga-
rithmic-transformed values (log Keq) are used for the con-
venience of normalization of the data.

Fifteen antitumor drugs (Table 1 and Fig. 1), most of them
in clinical use, were deemed to achieve the criteria
required to enter the present study.

Correlation and Multiple Regression

Most statistical calculations were carried out using the
SPSS v.13.0.1 package (SPSS Inc., Chicago, IL). The nor-
mality (normal distribution) of the data was analyzed by
the Shapiro-Wilk test, which is especially suitable for ana-
lyzing samples containing a small number of variables
[19]. Both the Pearson and Spearman's p correlation coef-
ficients (one tailed tests) have been calculated among the
different molecular descriptors. Pearson coefficients
require assuming a normal distribution of the sample,
while the Spearman's p is a non-parametric measure. The
actual p values are usually indicated for the different sta-
tistic analyses.

http://www.biomedcentral.com/1471-2210/9/11

Multiple regression was used to predict Keq from the
molecular descriptors described in the legend to Table 1.
Multiple linear regression benefits from a well-developed
mathematical framework that yields unique solutions and
exact confidence intervals for regression coefficients [20].
As the first choice, the regression procedure followed was
stepwise selection (criteria used: probability-of-F-to-enter <
0.050, probability-of-F-to-remove > 0.100), although
other available methods as entry and backward were also
used to reach the better, statistically significant, estima-
tion of logKeq. Multiple regression was also used to predict
Gl;,, using the same molecular descriptors plus Lipinski's
scores and logKeq values as additional variables.

The model output, generated by the SPSS software pack-
age, provides several parameters that were used to check
the reliability of the analysis, such as the correlation coef-
ficient (1), r2 that indicates the percentage of the variation
in logKeq (or Gl5,) that can be explained by the regression,
and the adjusted 12 (AdR?) that is the r2corrected for the
number of predictors.

AdR? was determined by the following equation:

-1
AdR? =1-(1-r2)- "
(=) n—k—1
in which n = number of cases (drugs) and k = number of
variables (descriptors)

AdR? was computed to avoid an overestimation in pre-
dicting r2 due to the few cases (15 drugs) tested relative to
the number of variable (6 molecular descriptors)--up to 8
variables when Lipinski's rule scores and logKeq values
were introduced in the analyses of GI;, see results--.

Multicollinearity

Multicollinearity, also known as collinearity, arises when
a high degree of correlation (either positive or negative)
exists between two or more independent variables.
Because multicollinearity means redundancy in the
molecular descriptors to predict logKeq or Gls, its pres-
ence was detected by determining the variance inflation fac-
tor (VIF), which can be computed from individual r2--
distinct from the overall r2 of the model--using the follow-
ing equation:

VIE =1/(1-1?%)

When variables are collinear VIF is higher than 1. A VIF of
4 and above was used to detect a multicollinearity prob-
lem (corresponding to 12 values greater than 0.75) and
used to eliminate the corresponding molecular descrip-
tors from predictive equations.
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Figure |
Molecular formulae of six of the noncovalent DNA-binding drugs used in the present study. The drugs displayed
are characterized by their high activity in the NCl's tumor screening panel.
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Hierarchical cluster analysis of molecular descriptors and
DNA-binding drugs

Cluster analysis was performed with the SPSS software,
using a single linkage (agglomeration) algorithm method
and Pearson correlation coefficients. Dendrograms show-
ing hierarchical clustering are presented in terms of simi-
larities between cases (DNA-binding drugs) or variables
(molecular descriptors).

Principal Component Analysis

Principal component analysis was undertaken as a way of
identifying patterns in data, and expressing them in such
a way as to highlight their similarities and differences.
Principal component analysis extracted factors on the
basis of the correlation between the six molecular descrip-
tors in Table 1 and logKeq. For Gl analysis, logKeq and
Lipinski's scores (Table 1) were used as additional predic-
tor variables.

Principal component with eigenvalues of 2 were retained
and orthogonally rotated using the Varimax method -- the
point was to minimize the complexity of the component
while ensuring that the molecular descriptors were uncor-
related--. Descriptors with loadings of > 0-25 or <-0-25
were considered as significant contributors. Factor scores
were saved for each principal component, and used to
obtain graphic representations of drug's scores, on 2D
principal component plots.

Results

Drugs that bind reversibly to DNA can be characterized by
common molecular descriptors, as well as by their DNA-
binding constant

Table 1 shows six common molecular descriptors, XlogP,
molecular weight (Mw), number of potential hydrogen
bond acceptors (HbA), potential hydrogen bond donors
(HbD), polar surface area (PSA) and complexity. The
complexity rating of a compound is the rough estimate of
how complicated a structure is, seen from both the point
of view of the elements contained and the displayed struc-
tural features including symmetry. The complexity values,
computed using the Berz/Hendrickson/Ihlenfeldt for-
mula, were retrieved from the PubChem compound web
site: http://pubchem.ncbinlm.nih.gov. Table 1 also
presents the equilibrium DNA binding constant for fifteen
drugs, retrieved from the bibliography [4,5,16,21-31] (the
values of Keq have been transformed to logKeq in the sake
of data normalization). Table 1 also displays the values of
the Lipinski's score (a measure of bioavailability [32]),
and the GI;,, which is a measure of the cytotoxicity or
cytostasis induced by the different drugs [2]--it corre-
sponds to the negative logarithm of the drug concentra-
tion that inhibits cell growth--. Table 1 contains
molecules binding to DNA reversibly [4], yet some of
them are also classified as topoisomerase II poisons, or

http://www.biomedcentral.com/1471-2210/9/11

they are known to be involved in reactions leading to
DNA cleavage. The set of DNA-binding drugs encloses
intercalators, the bis-intercalator echinomycin, and some
minor-groove binders.

The number of variables (molecular descriptors) and
drugs that accomplished the prerequisites to enter the
study was rather small; thereby normality of the sample
distribution could be compromised. According to the Sha-
piro-Wilk normality test (Table 2), only Mw, and HbD
departed significantly from normal distribution (p >
0.01). Furthermore, other precautions needed in a statisti-
cal analysis of small populations were undertaken, and
they are indicated in the relevant place in the text.

The fifteen drugs described in Table 1 were tested as three
subsets aimed at helping to parse the potential of molec-
ular descriptors for predicting logKeq values. The first set
contemplates all the DNA-binding drugs, while the other
sets correspond to the intercalators (bis-intercalating echi-
nomycin was not considered a member of this subset),
and to DNA-binding drugs that had been organized into
self-organizing maps (SOM) as belonging to the 'M-
region' (so, named here as 'M-region' compounds) [9]. 'M
region' compounds possess an outstanding cytotoxic, or
cytostatic, activity (high Gls, values) and relatively larger
PSA and Mw compared to other antitumor drugs analyzed
in the NCI-60 cell lines [9]. Drugs belonging to this SOM
region were obtained online by using the 3D Mind tools
at: http://spheroid.ncifcrf.gov/spheroid/default.htm.
They are actinomycin D, chromomycin, daunorubicin,
doxorubicin, echinomycin, elsamicin A, mithramycin A
and mitoxantrone.

Correlations between the drug binding constant (logKeq)
and the different molecular descriptors were calculated by
using two different coefficients: the Pearson correlation
coefficient, which is a parametric statistic, and the non-
parametric Spearman's p correlation coefficient, which
might be more reliable for the molecular descriptors that

Table 2: Results of the Shapiro-Wilk normality test(2)

W-Statistic df P
MW 0.827 15 0.008
XlogP 0.951 15 0.542
HbD 0.767 15 0.001
HbA 0.933 15 0.298
PSA 0.862 15 0.026
Complexity 0.873 15 0.038
logKeq 0915 15 0.163
Lipinski 0.847 I5 0.016
Glsy 0.960 15 0.697

@ Molecular descriptors were considered to pass the normality test if
p>0.0lI
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did not show a normal distribution (Table 3). The Pear-
son and Spearman's p correlations calculated between
each molecule descriptors plus logKeq and Gls, values are
shown, together with the significance levels, in Additional
Files 1 and 2, respectively.

Significant correlations between logKeq and several molec-
ular descriptors were established according to both the
Pearson and Spearman's p coefficients (Table 3)--see also
Additional Files 1 and 2--. These results indicated that it
was reliable to use the more robust parametric tests
throughout the present study despite the, from a statistical
point of view, small size of the sample analyzed--when
corrections for small sample were available they were
thoroughly used--, or the departure from normality of a
few parameters. In general, there was a clear correspond-
ence between the correlation values obtained by using
either coefficient, yet the actual p values differed (Table 3).
The molecular descriptors that correlated better, either
positively or negatively, with logKeq were not the same
when the fifteen drugs were evaluated together, or the cor-
relations were calculated for 'intercalators' and 'M-region'
compounds respectively. According to the Pearson corre-
lation coefficients, when all the drugs were analyzed
together there was a negative correlation with XlogP (p <
0.05) but also with Mw and complexity, although with p
< 0.1 (Table 3). According to the Spearman's p, only XlogP
correlated negatively with logKeq (p < 0.1). For the DNA
intercalators, both coefficients showed a negative correla-
tion between logKeq and XlogP; while the Spearman's p
also indicated a significant positive correlation with HbD
(Table 3). The number of molecular descriptors that cor-
related significantly with logKeq was clearly higher when
the more active 'M region' compounds were studied
(Table 3). Both coefficients revealed significant correla-
tions between logKeq and four molecular descriptors: Mw,
HbA, PSA and complexity (p < 0.01). Nevertheless, some
of these descriptors were also highly correlated among
them, and therefore there are grounds for considering that
any intention of deriving equations to predict logKeq for
any DNA-binding molecule based upon a combination of
these molecular descriptors should not disregard that they
can contain redundant information. The only molecular

http://www.biomedcentral.com/1471-2210/9/11

descriptor that seemed to be relatively independent of the
other descriptors was XlogP, tentatively because it is a
molecular descriptor for hydrophobicity almost inde-
pendent of the size of the molecules.

Drug-DNA binding constants might be predicted from a set
of molecular descriptors

Multiple linear regression calculations were used to derive
equations to predict logKeq for drugs binding reversibly to
DNA by using the set of molecular descriptors shown in
Table 1. If these equations are to be used in drug analysis,
a multiple regression approach would require to consider
the presence of redundant information among the molec-
ular descriptors, because several molecular descriptors
showed a fair correlation with logKeq (Table 3), thus
redundancy (multicollinearity, see Methods) had to be
avoided. The number of cases (i. e., noncovalent DNA-
binding drugs) should substantially exceed the number of
predictor variables to be used in a multiple regression
analysis (one rule of thumb is to have at least five times
more cases as predictor variables). At first glance, this is a
condition that seems impossible to meet here. Neverthe-
less, since redundancy may be eliminated, as shown
below, the number of variables (molecular descriptors)
was reduced; thereby the variables to cases ratio became
acceptable.

Table 4 presents the equations obtained by multiple linear
regression that predict logKeq by using some of the molec-
ular descriptors as variables. All the equations were
derived following two criteria. First, they contained pre-
dictors in absence of multicollinearity, thus avoiding
redundancy owing to the high correlation between some
of the molecular descriptors. The VIP (variance inflation
factor) was used to eliminate any multicollinearity--see
Methods and Additional File 3--, which explains the statis-
tic details. Second, they were statistically significant
according to an ANOVA test (Table 4, and Additional File
3). When the 15 drugs were analyzed together, logKeq val-
ues were better predicted by XlogP (the correlation was
negative), yet the polar surface area (PSA) could also par-
ticipate (p < 0.1; Table 4 and Fig. 2A). The prediction of
logKeq using these molecular descriptors was low 36%

Table 3: Calculated Pearson and Spearman'’s rgcorrelation coefficients between each molecular descriptor and log Keq.

All Drugs Intercalators 'M-region’
Pearson P Spearman's p? Pearson p Spearman's p Pearson p Spearman's P

Mw -0.396 722 x 102 -0.177 2.64 x 10! -0.096 3.96 x 10! 0.073 4.20 x 10! -0.909 8.72 x 104 -0.857 327 x 103
XlogP -0.461 4.20 x 102 -0.388 7.66 x 102 -0.662 1.85 x 102 -0.699 1.20 x 102 -0.118 391 x 10! 0.000 5.00 x 10!
HbD 0.047 4.34 % 10" 0.252 1.83 x 0! 0.189 3.01 x 10" 0.636 240 x 102 -0.368 1.85 x [0 -0.258 2.69 x 10!
HbA -0.272 1.63 x 10! -0.244 1.91 x 10! 0.143 3.50 x 10! 0.049 4.47 x 10! -0.955 LIl % 104 -0.976 1.66 x 10-5
PSA -0.151 2.96 x 10! -0.211 225 x 10! 0.079 4.10 x 10! 0.141 3.50 x 10°! -0.950 1.47 x 104 -0.994 1.00 x 106
Complexity -0.373 8.56 x 102 -0.252 1.82 x 0! -0.088 4.00 x 10! -0.067 4.30 x 10! -0.844 4.18 x 103 -0.857 327 x 103
a Significance level (actual p values)
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Table 4: Equations used to predict logKeq values for DNA-binding drugsa.

Predictive equation r p AdR?
All drugs log Keq = -0.255(% 0.100) XlogP - 0.003(+ 0.002)PSA + 6.603(* 0.465) 0.603 6.6 x 102 0.258
All drugs log Keq = -0.181(% 0.097)XlogP + 5.865( 0.215) 0461 84x102 0.152
Intercalators log Keq = -0.225(% 0.090)XlogP + 6.054(% 0.229) 0.662 3.7 x 102 0.368
'M-region’ log Keq = 0.128(% 0.067) XlogP - 0.178(* 0.020)HbA + 0.173(% 0.066)HbD + 7.577(% 0.268) 0.984 2.0 x 103 0.944
'M-region’ log Keq = -0.138(% 0.190)HbA + 8.090(* 0.303) 0.955 22x 104 0.897

The predictive equations are presented for the three sets of drugs analyzed (All DNA-binding drugs, Intercalators and 'M-region' compounds)

described in the main textb.

2Obtained by multiple regression analysis, in which molecular descriptors showing multicollinearity were discarded (see the main text for details).
The predictive equations displayed are those statistically "more significant" for each set of predictors (actual p values, ANOVA test, are shown in
the Table), r is the correlation coefficient of the linear fit, AdR2is the fraction of the variance in logKeq that is explained (predicted) by the model,
corrected for the number the variables in the model, as described in Methods.

bThe cases (drugs) used in the calculations for each set were 15, 10 and 8 respectively.

according to the r2 values, corresponding to about 26%
when an adjusted r2, which accounts for the small size of
the sample, was used (AdR2in Table 4) and barely signif-
icant (Table 4). Much better predictions of logKeq were
obtained when drugs were considered as the subsets
'intercalators’ and 'M-region compounds' described
above. For intercalators, about 44% (37% using the
adjusted parameter) of the logKeq values were explained
by XlogP (p < 0.05; Table 4 and Fig. 2A). The better predic-
tion of logKeq was obtained for the drugs included in the
'M-region', for which two equations were derived from
multiple correlation models (ANOVA test, p < 0.002),
with a prediction reaching more than 90% (almost the
same value was observed when the AdR? was considered,
Table 4). It is noteworthy that for this particular set of
drugs XlogP contribution appeared to be less important
than the HbA and HbD values. This observation is in
keeping with the ranks of molecular descriptors and mean
G5, used to define the 'M-region' in SOM analysis [9] (see
also Fig. 2A).

Hierarchical cluster analysis builds groups of molecular
descriptors and DNA-binding drugs based on their
similarity

A hierarchical clustering analysis of the different molecu-
lar descriptors based on the Pearson correlation coeffi-
cient was used to build groups of molecular descriptors
showing close physicochemical properties. The dendro-
grams shown in Fig. 2B indicated that among the molecu-
lar descriptors there were only two independent
predictors: XlogP (a round measure of lipophilicity or
hydrophobicity) and molecular size, which clustered at
larger distances. One of the clusters revealed the proximity
among the variables that appear to depend on the mole-
cule size, such as Mw or PSA, while the other two param-
eters XlogP and logKeq only clustered with them at large
distances. This clustering visually showed that the differ-
ent parameters were highly correlated, the exception being
XlogP (Fig. 2B). These results were consistent with previ-

ous reports that used a larger data set that included drugs
with multiple mechanisms of action [9]. This coincidence,
which occurred regardless of the sample size, may be con-
sidered as an indirect proof of the robustness of the
present approach using a smaller sample population.

Moreover, hierarchical analysis was used to classify the
different drugs into relatively homogeneous groups
within themselves and heterogeneous between each
other, on the basis of the Pearson correlations between
molecular descriptors (Fig. 2C). Dendrograms, showing
the relationship among the six molecular descriptors used
to predict logKeq for all the DNA-binding drugs are shown
in Fig. 2C, with connection lines further to the right indi-
cating more distance between drugs and clusters. This
hierarchal classification grouped together molecules with
similar structures, such as the anthracyclines doxorubicin,
daunorubicin and epirubicin, while the more complex
actinomycin D and echinomycin were also brought
together in a different cluster, the latter clustering next to
other large molecules, such as bleomycin and the structur-
ally related aureolic acid antibiotics mithramycin A and
chromomycin. The minor-groove binder distamycin clus-
tered with the anthracyclines (Fig. 2C), in keeping with
that all these molecules showed similar values in several
parameters, which included logKeq and complexity (Table

1).

Principal component analysis discovers and summarizes
patterns of intercorrelation among molecular descriptors
The presence of multicollinearity in the multiple regres-
sion analysis raised a question on whether some of the
parameters used in the analysis of drug's activity endure
redundant information that may be reduced to a few key
molecular descriptors conveying all the structural infor-
mation required for drug design. A way to identify under-
lying variables (factors) is provided by principal
component analysis, see Methods. The variables (molecu-
lar descriptors) for the fifteen noncovalent DNA-binding
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regression analysis using molecular descriptors (Keq (cal)) are plotted together with experimentally calculated values (Keq
(cal)) for the complete set of drugs, intercalators and 'M region' compounds respectively. Equations used to calculate logKeq
are shown in Table 4. ACT (actinomycin D), BLEO (bleomycin), CHAR (chartreusin), CRO (chromomycin), DAU (daunoru-
bicin), DIST (distamycin), DOXO (doxorubicin), ECH (echinomycin), ELSA (elsamicin A), EPI (epirubicin), ETH (ethidium),
AMSA (m-AMSA), MTA (mithramycin A), NETR (netropsin). (B) Dendogram showing average linkage hierarchical clustering of
six molecular descriptors for noncovalent DNA-binding drugs, based on the Pearson correlation coefficients. Descriptors with
higher similarity are clustered together. (C) Hierarchical clustering applied to the 15 drugs binding reversibly to DNA (Table
I) on the basis of their proximities. Connecting lines further to the right indicate more distance between clusters of either

molecular descriptors (B) or drugs (C).

drugs were analyzed, using three separate computations
corresponding to the three subsets of drugs described
above.

Fig. 3 shows the results of a principal component analysis,
in which the molecular descriptors were plotted on the

first two components. In principal component analysis
the measure of the percent of variance in a given variable
explained by all the factors is known as communality.
Communalities corresponding to the different principal
component analysis are shown as supplementary data
(Additional File 4), which also presents other statistic
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details of the principal component analysis. For all drugs,
the extracted communalities were, in general, over 90%,
which means that most of the percent of variance in a
given molecular descriptor was explained by the factors
(components) extracted. When all the drugs were consid-
ered together the first principal component explained
74.22% of total variance, while 20.13% was explained by
the second component (Fig. 3A). In summary, the two
principal component models were enough to accurately
describe the data, since they explained 94.35% of the var-
iance. Component 1 can be considered to reflect the
"molecular size" while component 2 would represent a
"hydrophilicity-hydrophobicity" axis, with XlogP clearly
loading in the hydrophobic part of it. Graphic representa-
tion of the scores obtained by principal component anal-
ysis offered a direct visual identification of some common
features of the drugs (Fig. 3B). For example, structurally-
related drugs, such as the anthracyclines, clustered
together in the same regions of the plot. Besides, the larger
molecules also clustered nearby (echinomycin, actinomy-
cin D), or also the smaller ones (ethidium and m-AMSA).
There were some differences in the exact location (score)
on the graphic representation depending on the subset of
data used: all drugs (Fig. 3B), intercalators (Fig. 3D) or 'M-
region' compounds (Fig. 3F)).

The larger bleomycin, mithramycin A and chromomycin
(Table 1) were located in a region corresponding to the
positive values of the first component, on account of their
"big size" compared to the relatively smaller doxorubicin
and daunorubicin (Fig. 3B). Figs. 3C and 3D show the
principal component analysis for the set of DNA-interca-
lating drugs, for which the principal component
explained 77.74% of the variance, and 17.35% was
explained by the second component, with a total 95.09%
of variance explained by both factors. Principal compo-
nent for the 'M-region' compounds (Figs. 3E and 3F) were
64.11% and 29.87% respectively, with a 93.98% of the
total variance explained. The number of potential hydro-
gen donors (HbD) had a loading value much closer to the
hydrophilic factor in this component, opposite to XlogP
loading (Fig. 3E). An elevated relevance of the number of
potential hydrogen bonding in drugs belonging to the 'M-
region' subset was in concordance with the importance
given to them as a source of DNA-binding specificity [4,5].

DNA-binding constants and a combination of molecular
descriptors might be used to estimate the cytotoxicity
(Gl values) of drugs binding noncovalently to DNA

After obtaining equations that predict logKeq from the dif-
ferent molecular descriptors, we should consider whether
a correspondence exists between the strength of noncova-
lent binding to DNA and the cytotoxicity or cytostasis
measured as the G, values. At this point, the Lipinski's
scores [32] (Table 1), an additional descriptor of biologi-

http://www.biomedcentral.com/1471-2210/9/11

cal activity for drugs (also known as the rule-of-five), was
added for the following calculations.

For the complete set of DNA binding drugs a small nega-
tive and nonsignificant correlation was found between
Gl and logKeq (Pearson correlation coefficient: -0.277 (p
= 3.17 x 101)), which for the more potent 'M-region'
compounds was -0.822 (p = 1.51 x 10-1)). However, the
correlation was positive, yet barely significant, when the
subset of intercalators was considered (0.413; p = 1.17 x
10-1). Although, all these correlations were within the lim-
its of being of random occurrence, it is noteworthy that
cytotoxicity was not positively related to logKeq, except for
the intercalating agents. Indeed, the 'M-region' encom-
passes several intercalators (Fig. 2a and Table 1), which
suggested that any interpretation based solely on the cor-
relation between any pair of descriptors has to be evalu-
ated with caution. Complexity, which as explained above,
is a rough estimate of how complicated a structure is
(Table 1), was significantly and positively correlated with
Gl;, for "all drugs" (0.591; p = 2.0 x 10-2), intercalators
(0.435; p = 1.04 x 102) and 'M-region' compounds
(0.984; p = 5.23 x 10-°). A further analysis of the potential
effect of the equilibrium binding constant on the predic-
tion of GI;, was undertaken by other approaches
described below.

Multiple regression was used to derive equations to pre-
dict GI;,, avoiding the problems of multicollinearity.
Table 5 shows the equations calculated for either set of
drugs ("all" drugs, intercalators and 'M-region' com-
pounds). Statistical details about the multiple regression
analysis are shown as supplementary data (Additional File
5), including the VIF (variance inflation factor) values
used to detect multicollinearity. Using the entry method,
see Methods, logKeq was included in the predicting equa-
tions, taking special care that adding this new variable did
not violate the absence of multicollinearity. When the 15
DNA-binding drugs were analyzed together the multiple
linear regression analysis excluded logKeq as a variable,
following the enter/remove criteria outlined in Methods.
Much better prediction for Gl was reached in the analy-
sis of the 'intercalators' and 'M-region' subsets, and the
predicting equations contained logKeq as a variable (Table
5). For the 'M-region' compounds, about 96% of GI;,
value was predicted multiple regression (Table 5 and Fig.
4A). Unexpectedly, Lipinski's scores (Table 1) did not par-
ticipate significantly in any of the equations derived to
predict GI, values. The main cause for this was multicol-
linearity.

Complexity was the main predictor for cytotoxicity (Gls,
values, Table 5). This observation was consistent with that
more complex molecules would tend to be more potent
inhibitors of cell growth [9], while the chance of violating
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Lipinski's rule is enhanced for large molecules [32]. How-
ever, a comparison between Tables 4 and 5 uncovered that
complexity was not a relevant variable in the equations
aimed at predicting the DNA-binding constant (logKeq)
described above. Complexity was excluded from the equa-
tions used to predict logKeq, regardless of its importance in
predicting GIs, values, because it showed a significant
multicollinearity with other parameters related to size.
Consistently, complexity loaded close to Mw in the prin-
cipal component loading plots (Fig. 3).

A hierarchical clustering of all the drugs based on the Pear-
son correlation coefficients (Fig. 4B) rendered two main
clusters that separate the molecules with higher complex-
ity from the rest of compounds. Although at first glance
complexity may benefit from a larger size, it also considers
other structural features including symmetry (Table 1).
Some degree of coherent clustering was expected for mol-
ecules related by chemical structure, thus structurally-
related molecules clustered nearby, such as the anthracy-
clines and the intercalator elsamicin A (Figs. 1 and 4B).

Principal component analysis was used to further disclose
the relationship between Gls), logKeq and common
molecular descriptors. As seen, the first principal compo-
nent (Fig. 4C) separated all the size-related descriptors
from Lipinski's scores, which evaluates large molecules
negatively [32]. The principal component analysis of the
more biologically-active 'M-region' compounds produced
a correlation matrix that was not positive definite,
together with a low extraction of Lipinski's score (46%
only; see Additional File 6), thus an additional principal
components analysis was performed in which Lipinski's
scores were not considered. While the reasons that could
render a matrix that was not positively definite are diverse
and difficult to delineate, removing Lipinski's score in the
analysis was enough to render a meaningful correlation
matrix, perhaps indicating that this predictor was essen-
tially not independent of the other molecular descriptors.
The extraction of two components using principal compo-
nent analysis explained about 87%, 88% and 94% of the
total variance for all the drugs, intercalators and 'M-
region' compounds respectively (Additional File 6). It is
noteworthy that the anthracyclines, which are a well refer-
enced group of active antitumor drugs [3] clustered near
the negative region of the second principal component in
the region of logKeq loading (cf. panels C and D in Fig. 4).
The huger molecules scored in the region corresponding
to the loadings of complexity and XlogP (up-right quad-
rant in Fig. 4C), while the smaller ethidium and m-AMSA
scored consistently in the plot region with higher XlogP
and Lipinski loadings.

http://www.biomedcentral.com/1471-2210/9/11

Discussion

There is an increasing interest in interfacing the studies on
drug cytotoxicity based on the NCI's tumor screening pan-
els with gene expression databases and the mechanisms of
drug action, cell sensitivity and resistance [8,14]. These
complementary approaches should provide clues about
the mechanisms of some molecules, which ultimately can
be developed as antitumor agents [10,14,15]. Drugs bind-
ing noncovalently to DNA have been in cancer treatment
since the 60's, and a detailed structural and functional
data on these molecules is available [4], including quanti-
tative data on their binding to DNA as well as the Gl;,
determined in the NCI-60 cell lines. These data sources
evidence the selectivity and relative effectiveness of such
drugs as anti-cancer agents [1,8,14], which in a few cases
has brought about the development of new clinically use-
ful derivatives, such as the anthracycline epirubicin [3].

We can intuitively consider that a certain relationship
should exist between the affinity of some drugs for bind-
ing to certain DNA sequences and the mechanisms of
action, including their cytotoxicity. Hence, it seems possi-
ble to facilitate the development of new drugs through a
better knowledge of the molecular descriptors that may
participate in the strength of binding to DNA. It is antici-
pated that any prediction of biological activity using phys-
icochemical descriptors is open to some margin of error
because there are other aspects that participate in cytotox-
icity, such as pharmacokinetics (for example, whether the
drugs can easily cross the cell membrane, or overtake a
multidrug resistance phenotype). The relation between
the capacity of a certain drugs for binding DNA and their
biological activity is made evident by the correlation
found between physicochemical and biological data for
some m-AMSA and actynomycin D analogs, which have
been developed from QSAR studies [18,33], and also
because DNA-binding drugs may act considered to act by
altering gene transcription through the inhibition of the
interactions between DNA and certain transcription fac-
tors [1,34,35]. Besides some o the drugs shown in Table 1
are also regarded as topoisomerase II poisons, seemingly
as a results of their interference with the DNA binding
sites for the enzyme, an aspect that is only indirectly
addressed here in terms of the drug's equilibrium binding
constants. Nevertheless, this makes an interesting point,
because it may, for example, explain why m-AMSA is
much potent antitumor agent than ethidium (cf. their
Gl values in Table 1) even though most of their molecu-
lar descriptors are very similar (Table 1). Moreover, m-
AMSA is active while 0-AMSA, which contains a methoxy
group in the ortho rather than in the meta position, is not
[36] regardless of the higher DNA-binding constant of o-
AMSA [24]. The m-AMSA activity is explained by its direct
interaction with topoisomerase Il [36]. In spite of this, the
replacement of the acridine moiety with the analogous 2-
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Table 5: Equations used to predict Gls, values for DNA-binding drugs2.

Predictive equation r p AdR
2
All drugse Gl =0.002(% 0.001)Complexity - 0.008(+ 0.004)PSA + 5.688(% 0.591) 0713 1.4x102 0426
Intercalators  Glzy= 0.742(% 0.219)logKeq + 0.002 0.894 1.6 x 102 0.700
(£ 0.000)Complexity + 0.008( 0.002)PSA + 1.977(% 1.319)
'M-region’ Gl5,=0.021(% 0.102)logKeq + 0.001 (£ 0.000)Complexity + 6.478(% 0.746) 0.984 1.8x 10+ 0.955

The predictive equations are presented for the three sets of drugs analyzed (All 15 drugs, Intercalators and 'M-region' compounds) described in the

main textb.

2 Obtained by multiple regression analysis. The predictive equations displayed are those statistically more significant for each set of predictors
(actual p values, ANOVA test, are shown in the Table). Other details as in legend to Table 4.

bThe cases (drugs) used in the calculations for each set were 15, 10 and 8 respectively.

clogKeq was not a significant predictor for Gls, for the set that contains the 15 (all) drugs.

oxo-2H-pyrano  [2,3-b]quinoline system drastically
reduced both the anti-cancer activity and the intercalation
into DNA [37] in line with the correlation observed for
intercalators between logKeq and GlIs,,.

The analysis presented here represents the first attempt at
establishing the bases for a deeper understanding of the
links that appear to exist between antitumor activity and
drug binding to DNA by evaluating whether molecular
descriptors can be used to define noncovalent drug-DNA
interactions. A clear correlation between logKeq and sev-
eral molecular descriptors is evident (Table 3). Among
them, only XlogpP is clearly and 'independent' descriptor,
mostly because it is the unique descriptor in Table 1 for
which the molecular size is barely relevant (Figs. 3 and 4).

Although, the multiple linear regression method used
here cannot capture nonlinear aspects of the relation
between logKeq or G5, and the molecular descriptors, the
approach used in this paper may be replaced by any cho-
sen nonlinear mathematical regression. Multicollinearity
has been considered scrupulously given the small number
of both drugs and molecular descriptors, thus its occur-
rence was used to eliminate redundancy in equations
aimed at predicting logKeq (Table 4) or Gl5, (Table 5). The
computations presented here disclosed that principal
component analysis is a rather strong tool for predicting
the presence of redundancy in descriptive elements during
drug design, helping to clarify the relative importance of
each molecular descriptor (Figs. 3 and 4). In general, it
can be considered that large molecules, no matter whether
they intercalate or not into DNA, may "benefit" of their
complexity to become more cytotoxic (Table 1), while
several smaller intercalators, such as the anthracyclines,
which bind tightly to DNA [16,30], are known useful anti-
tumor agents, tentatively on account of their effects on
gene transcription [13,38]. The loadings of the different
molecules in the principal component analysis (Fig. 4C)
suggest that diverse molecular descriptors, chiefly Keq and
complexity (Table 5), would participate in the final cyto-
toxic potential and its predictability.

Lipinski's scores have been widely used as a predictor for
bioavailability [32]. The Lipinski's rule-of-five states that
small hydrophobic molecules should be better therapeu-
tic agents. The results presented here challenge this view in
agreement with reports indicating that Lipinski's scores
are not an appropriate molecular descriptor when dealing
with large natural products [39], as it is the case with most
of the drugs analyzed here. A large set of the molecules
shown in Table 1 violates several of the Lipinski's rules,
such as having molecular weights over 500 g.mol’!, or
hydrogen bond donor counts (HbD) higher than five.

In absence of Lipinski's scores in the equations to predict
Gl;, (Table 5), complexity, a measure of how complicated
amolecule is (Table 1), emerged as a fundamental predic-
tor for biological activity, in keeping with the view that
more complex molecules tend to be more potent antitu-
mor agents [2,9,16]. Among the more potent drugs ana-
lyzed here, those with Gl5; > 7, only mitoxantrone has a
Lipinski's score higher than 2 (Table 1).

Equations obtained by multiple regression were signifi-
cantly better at predicting logKeq or Gls, for the M-region
compounds (actinomycin D, chromomycin, daunoru-
bicin, doxorubicin, echinomycin, elsamicin A, mithramy-
cin A and mitoxantrone) than for the subset of
intercalators or for the entire set of DNA-binding drugs.
About 90% of the experimental logKeq and 95% GI;, were
simulated even after correcting the results for the small
sample population (AdR? values shown in Tables 3 and
4). In SOM the 'M-region' encompasses potent antitumor
compounds [9], some of them are DNA-binding drugs,
which act mainly by interfering with DNA synthesis and
transcription, but it also contains other drugs of natural
origin acting against the mitotic spindle, such as taxanes

[9].

A potential concern about the approach presented here
was to establish the robustness of the statistical tests that,
of necessity, were employing a small number of cases
(drugs), which represent only about twice the number of
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variables (molecular descriptors). However, by using both
parametric and nonparametric statistic approaches, it has
been possible to evaluate the strength of noncovalent
drug binding to DNA from common molecular descrip-
tors, and to established whether these molecular charac-
teristics are correlated with their cytotoxic/cytostatic
activity in cells in culture. In addition, it will be opportune
to link the predictions presented here with the analysis of
changes in gene expression induced by those drugs since
this may retrieve genes that can be used as predictors of
chemosensitivity [8,11,13,40].

Target-specific drugs that bind reversibly to certain DNA
sequences with high affinity have been of outstanding
interest in the development of new antitumor agents
[16,17,41]. A main conclusion of the present study is that
both the strength of binding to DNA and drug cytotoxicity
are fairly predictable from molecular descriptors, in agree-
ment with that compounds active across the NI-60 cell
lines tend to have common structural features [42].

Conclusion
For drugs binding reversibly to DNA, both their strength
of binding and their cytoxicity may be predicted from
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molecular descriptors by using multiple regression meth-
ods. Equations to predict drug-DNA binding constants
and growth-inhibitory concentrations were obtained by
multiple regression following rigorous statistical proce-
dures. These equations may be useful for rational drug
design The results obtained agree with that compounds
more active across de National Cancer Institute's 60 cell-
line data set tend to have common structural features.

Additional material

Additional file 1

Pearson correlations (1) and significance levels (p-values) calculated
between all molecular descriptors and Gl5, values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-81.pdf]

Additional file 2

Spearman's p correlations and significance levels (p-values) calculated
between all molecular descriptors and Gl5, values.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-52.pdf]

Additional file 3

Data outputs obtained in the multiple regression analyses to predict
logKeq using molecular descriptors. Data are presented for the three
subsets of drugs: DNA-binding (all) drugs, intercalators, and 'M-region'
compounds. Equations used to predict logKeq are shown in Table 4.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-S3.pdf]

Additional file 4

Data ouputs generated by the principal component analyses of the
molecular descriptors used to predict logKeq. Data are presented for
the three subsets of drugs: DNA-binding (all) drugs, intercalators and 'M-
region' compounds.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-S4.pdf]

Additional file 5

Data outputs obtained in the multiple regression analyses to predict
cytotoxicity (Gls,) using molecular descriptors and the drug-DNA
equilibrium binding constant (logKeq). Data are presented for the
three subsets of drugs: DNA-binding (all) drugs, intercalators, and 'M-
region' compounds. Equations used to predict Gl s, are shown in Table 5.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-S5.pdf]
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'M-region' compounds.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2210-9-11-S6.pdf]

Additional file 6

Data outputs generated by the principal component analyses of the
molecular descriptors and the drug-DNA equilibrium binding con-
stant (logKeq) used to predict cytotoxicity (Gl5,). Data are presented
for the three subsets of drugs: DNA-binding (all) drugs, intercalators and
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