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Abstract

Background: Network science is already making an impact on the study of complex systems and
offers a promising variety of tools to understand their formation and evolution in many disparate
fields from technological networks to biological systems. Even though new high-throughput
technologies have rapidly been generating large amounts of genomic data, drug design has not
followed the same development, and it is still complicated and expensive to develop new single-
target drugs. Nevertheless, recent approaches suggest that multi-target drug design combined with
a network-dependent approach and large-scale systems-oriented strategies create a promising
framework to combat complex multi-genetic disorders like cancer or diabetes.

Results: We here investigate the human network corresponding to the interactions between all
US approved drugs and human therapies, defined by known relationships between drugs and their
therapeutic applications. Our results show that the average paths in this drug-therapy network are
shorter than three steps, indicating that distant therapies are separated by a surprisingly low
number of chemical compounds. We also identify a sub-network composed by drugs with high
centrality measures in the drug-therapy network, which represent the structural backbone of this
system and act as hubs routing information between distant parts of the network.

Conclusion: These findings provide for the first time a global map of the large-scale organization
of all known drugs and associated therapies, bringing new insights on possible strategies for future
drug development. Special attention should be given to drugs which combine the two properties
of (a) having a high centrality value in the drug-therapy network and (b) acting on multiple molecular
targets in the human system.

Background

Complex behavior and networked structures emerge in
systems composed of many interacting elements [1-4].
The exploration of large databases from drastically differ-
ent systems has allowed us to construct complex networks
and uncover their organizing principles in many disparate
fields, from large communication networks [5,6], trans-
portation infrastructures [7] and social communities [8,9]

to biological systems [1,10]. Recent drug development
strategies suggest that multi-target drug design combined
with network-oriented approaches are promising to com-
bat complex multi-genetic disorders [11-13]. However,
this raises the question of what are the direct and indirect
network-dependent effects. Addressing such questions
requires an accurate description and fundamental knowl-
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edge of the large-scale interactions between drugs and
therapies, as well as between drugs and diseases.

Breathtaking advances in pharmacology and medical sci-
ence together with improvements in storage and data
management have made it possible to organize and clas-
sify huge amount of information from drugs and associ-
ated diseases and therapies. The DrugBank database [14]
is one of the largest chemo-informatics resources and con-
tains detailed information about approved drugs and
drug targets. The drug category also includes information
about their associated therapeutic properties following
the Anatomic Therapeutic Chemical (ATC) classification
[15]. This knowledge allowed us for the first time to inves-
tigate the human network corresponding to the interac-
tions between all US approved drugs and associated
human therapies, defined by known drug-therapy rela-
tionships. This network defines a bipartite graph [16]
whose nodes can be classified into two disjoint sets of
drugs (D) and therapies (T) such that each edge connects
anode in D and one in T (thus, it is not possible to find
two adjacent nodes within the same set). This bipartite
graph can be decomposed into two networks. The drug
projection is composed of nodes from the set D and two
drugs are connected if there is a common therapy that is
involved in both. The therapy projection is based on
nodes from the set T and two therapies are connected if a
drug implicated in both therapies exists. Therapies are
closely linked to diseases, therefore the therapy network
gives insights about the relations between diseases as well,
completing previous work about the global organization
of the human disease network [17,18].

Network analyses based on the bipartite graph and the
associated network projections here reveal striking prop-
erties that characterize this global map of drug-therapy
interactions. Our findings indicate that the network has a
small average shortest-path length. In particular, the aver-
age distance between therapies is less than three steps,
suggesting that distant therapies are separated by a low
number of chemicals. In addition, our results indicate that
much of the chemical information flowing through the
network is routed through a small number of drug hubs.

In order to identify the main set of drugs/therapies that
governs the network, we computed several network cen-
trality metrics [19] that characterize the most influential
nodes in the network. Next, exploitation of the correla-
tions between pairs of different metrics provides a com-
plementary perspective on the heterogeneous statistical
properties of the network. We identified a sub-network
composed by drugs with high betweenness centrality in the
drug-therapy network, which represent the structural
backbone of this system. Identified drugs with highest
centrality include Scopolamine, Morphine, Tretinoin and
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Magnesium Sulfate. Special attention should be given to
drugs which combine the two properties of (a) having a
high centrality value in the drug-therapy network and (b)
acting on multiple molecular targets in the human system.

Results

Drug and therapy networks

The hierarchical structure of the ATC classification makes
it possible to represent drug and therapy networks at five
different levels, progressively revealing more details on
interaction patterns. A striking observation is that the
therapy network is fully connected at level 1 (Figure 1 and
Additional file 1), and still almost fully connected at level
2 with the exception of one small isolated component.
This finding is unexpected, since many drugs only have
one specific therapeutic application (Figure 2). By com-
puting the number of connections of each therapy net-
work node (i.e., node degree k) at level 3, we found that
the degree distribution follows a power-law P(k) o« k7,
with degree exponent y= 1.1 [20]. That is, the probability
to find highly connected therapies, or hubs, is rather
higher than in an equivalent random network. Further-
more, the smaller the value of y, the more influential the
role of the hubs is in the network. We thus conclude that
these highly connected therapies play a relevant role in
this network because the observed degree exponent is not
high. In addition, scale-freeness of the therapy network is
conserved in the hierarchy of the ATC classification, as it
is observed in both levels 2 and 3 (Figure 3a-b). On the
other hand, the drug projection at level 3 shows a skew
degree distribution with a broad tail and saturation curve
for low degrees (Additional file 2). This pattern resembles
the observed distributions in other bipartite networks
[21].

The full bipartite network (Additional files 3, 4, 5, 6, 7, 8)
shows that a majority of drugs are grouped in clusters con-
nected to a specific therapy. But links exist between thera-
pies, which are created by drugs spanning different
therapeutic classes. These drugs acquire a particular signif-
icance, since they create links between different therapies
and allow the complete therapy network to be connected.
This observation can be quantitatively examined by con-
structing the histogram of the number of complete ther-
apy identifiers associated to each drug (corresponding to
level 5 of the ATC classification) shown in Figure 2. This
histogram reveals that a majority of drugs (79%) are asso-
ciated to a unique therapy. These drugs create no connec-
tion in the therapy network projection, thus all edges are
due to the remaining 21% of drugs. It is surprising that the
therapy network remains fully connected despite this
small proportion. Moreover, edges do not predominantly
connect therapies belonging to the same first-level class.
This finding is made visible in Figure 1, where nodes have
been colored according to their first-level class, revealing
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a, b: The therapy network at level | (a) and 2 (b). Nodes are colored according to the first level of the ATC classification. The
size of nodes is proportional to the number of therapies in the class. The thickness of edges is proportional to the number of
drugs linking the two therapies. c: Distribution of shortest path lengths in level 2 of the therapy network.

a large number of links between distinct classes. It is worth
noticing that if only 21% of drugs create connections at
level 5, it implies that the proportion is even smaller at
inferior levels, as smaller levels lead to a merging of ther-
apy nodes.
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Figure 2
Distribution of the number of ATC identifiers associated to
each drug (corresponding to level 5 of the ATC classification.

Shortest paths

Shortest paths provide a measure of the efficiency of infor-
mation flow in a network. For example, the efficiency of
the chemical mass flux in a metabolic network can be esti-
mated by computing its average shortest path length.
Here, by investigating the therapy network projection
constructed using level 2 of the ATC hierarchical classifi-
cation, we have found that the average distance between
two randomly selected therapies is less than three steps
(2.61), which is very low (Figure 1c). The level 2 therapy
network is composed of 66 nodes and 237 edges and the
main connected component has 64 nodes and 236 edges.
It implies that in average distant therapies are separated by
a surprisingly low number of chemical compounds. This
value slightly increases to 3.41 when level 3 of the therapy
network is considered (Additional file 9). The level 3 ther-
apy network has 123 nodes and 349 edges, and the main
connected component consists of 106 nodes and 338
edges.

It is known that the average path length <I > is smaller in
the Barabdsi-Albert network than in a random graph for
any network size n. It means that a scale-free topology per-
forms better in connecting distant nodes than random
structures. Bollobds and Riordan [22] have shown that the
average path length of a scale-free model network follows
<l > ~ In(n)/In In(n). The computation of this expression
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a, b: Degree distribution of the therapy network at level 2 (a) with degree exponent y=0.76 + 0.10 and level 3 (b) with y=
[.11 £0.14. ¢, d: Correlation between the node degree k and the betweenness centrality B, (c) and the closeness centrality (d)
in the drug network at level 2. The correlation coefficient r is indicated in figures. The P-value is below 2.2e-16 in all cases.

for the therapy networks in levels 2 and 3 gives a value of
2.92 and 3.05, respectively. These values are compatible
with the observed values of 2.61 and 3.41. This reflects the
scale-free topology observed in therapy network (Figure
3a-b).

High-centrality drugs and network backbones

We investigated the betweenness of network nodes, a graph
theoretical centrality metric. While the degree k of a node
explains the general topological features of the network
and can only capture the local structure of network nodes
(nearest neighbors), the betweenness B; of a given node i
is related to how frequently a node occurs on the shortest
paths between all the pairs of nodes in the network
[16,23]. Hence, betweenness centrality identifies nodes
with great influence over how the information reaches

distant network nodes. This metric is relevant because it
connects the local network structure to the global network
architecture. In another context it has been proven to be
an indicator of interdisciplinarity [24], and it was success-
fully used in different research areas ranging from the
yeast protein interactome, for detecting essential proteins
and their evolutionary age [25], to the problem of epi-
demics, for identifying key players in spreading an infec-
tion [26].

In Table 1, we show the top-20 drugs with highest
betweenness in the drug network projection correspond-
ing to level 2 in the ATC hierarchical classification. This
information is complemented with the measure of the
closeness centrality C;, which measures how close a given
node i is to others [27]. In some contexts, closeness can be
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Table I: Top-20 drugs with highest betweenness centrality in the drug network projection corresponding to level 2 of the ATC
hierarchical classification. The associated therapy classes as well as closeness centrality, node degree and number of targets are also

displayed.

Accession Id

APRDO00616
APRDO00215
APRD00362
APRDO01080
APRDO00373
APRDO00047
APRD00406
APRD00807
APRDO00479
APRD00450
APRD00097
APRD00267
APRDO01022
APRDO00I3
APRDO00056
APRDO00174
APRD00326
APRDO00536
APRDO00650
APRDO00862

A0S

B0S

Generic name

APRD01080

Vo4

APRD00267
A10

. APRDD0047
NO3

Figure 4

Therapy classes

Scopolamine A04, NO5, SOI 0.0841 0.469
Morphine GO04, N02, N04, RO5, SO 0.0549 0.479
Tretinoin D10, LOI 0.0420 0.365
Magnesium Sulfate A06, Al2, BO5, DI, Vo4 0.0412 0.361
Celecoxib LOI, MOl 0.0340 0.356
R-mephobarbital NO03, NO5 0.0294 0.336
Physostigmine S0l, vo3 0.0261 0.454
Atropine A03, N04, SO 0.0251 0.460
Lidocaine COl, CO05, D04, NOI, R02, SOI, S02 0.0229 0.470
Epinephrine AOl, B02, COI, ROI, RO3, SOI 0.0216 0.472
Orphenadrine MO03, N04 0.0213 0.334
Tolbutamide A0, V04 0.0190 0.269
Hydroxocobalamin ~ B03, V03 0.0190 0.325
Neomycin AO0I, A07, BO5, D06, JOI, RO2, SOI, S02, SO3 0.0189 0.488
Heparin BOI, CO05, SOI 0.0188 0.454
Clonidine C02, N02, SOl 0.0185 0.461
Vitamin B2 All, BO3 0.0167 0.248
Vitamin B3 C04, Cl0 0.0167 0.269
Procaine CO05, D04, JoI, NOI, S0l 0.0164 0.478
Chloramphenicol Doé, D10, GOI, Jol, SO, S02, S03 0.0157 0.496
A1l
APRD00326
D11
B03
APRDO01022
APRDO00013 \%
BO1 Pt
\ Q. b $ L) ApRoo0STS
o o 27 pro  APRD00362
co5. APRDD0862 @o1
i . APR;OGSODQA .
A04 501 s02
N.D.‘: APRDO00479 i‘g
APRDO00616_ -~ APRD00807
APRDO0174 o2
co1 Cco4 c10

coz2

NO:

NO4
2 APRD00215

APRD00536
ARRDO0450

ros  R95 |G04  aAprDOODST
RO1

A01 BO2 Moz

B;centrality  C;centrality

Degree  Number of targets

155 |

164 |

80 3

24 3

94 |

8l |

106 |

126 5

166 2

158 3

38 5

27 2

16 8

187 2

121 3

136 |

12 7

21 8

199 5

184 |
APRDO00013 Neomycin
APRDO00047 R-mephobarbital
APRD00056 Heparin
APRDO00097 Orphenadrine
APRD00174 Clonidine
APRD00215 Morphine
APRD00267 Tolbutamide
APRD00326 Vitamin B12
APRD00362 Tretinoin
APRDO00373 Celecoxib
APRDO00406 Physostigmine
APRDO00479 Lidocaine
APRD00450 Epinephrine
APRD00536 Vitamin B3
APRDO00616 Scopolamine
APRDO00650 Procaine
APRDO00807 Atropine
APRD00862 Chloramphenicol
APRD01022 Hydroxocobalamin
APRD01080 Magnesium Sulfate

The top-20 drugs of highest betweenness centrality and their associated therapies at level 2. Drugs are represented by dark
blue empty diamonds, therapies are represented by circles and colored following the same code as in Figure 1.
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understood as a measure of how long it will take for infor-
mation to spread from a given node to distant nodes in
the network. Thus, nodes with high closeness indicate that
their influence can reach others more rapidly. In this net-
work, closeness is relatively high and homogeneous for
most nodes. Table 1 indicates that drugs with highest
betweenness are correlated with relatively high values of
closeness in most cases. The generic drug name and the
associated therapy classes are also displayed. The main
connected component of the level 2 drug network consists
of 828 nodes with an average path length of 3.15.

We were able to identify a reduced bipartite drug-therapy
network composed by drugs with highest betweenness
centrality (Figure 4). This sub-network reflects the struc-
tural backbone of the drug-therapy system and has great
influence over the chemical information flowing through
the network. Nodes with high betweenness centrality are
relevant because they bridge interactions between distinct
parts of the network. Identified drugs with highest central-
ity include Scopolamine, Morphine, Tretinoin and Magne-
sium Sulfate. Tt is worth noticing that the backbone is
almost fully connected as well, with the exception of two
smaller isolated components. Distant therapies can be
connected by a few drugs with high betweenness. For
example, Tolbutamide and Magnesium Sulfate define a key
shortest path of distance two between distant therapies
like "Insulines and analogues" (A10) and "Dermatologi-
cal preparations” (D11). "Cardiac therapy" (CO1) is
directly connected to the "Antihemorrhagics" node (B02)
via the drug Epinephrine. Apparently unrelated disorders
like diabetes and dermatological lesions are thus sepa-
rated by a much lower number of chemicals than could be
expected.

Correlations between network measures

We investigated the correlations between each of the three
measures of topological importance (degree k, between-
ness B; and closeness C;) in the drug network by calculat-
ing their Pearson correlation coefficient and P-value. Our
results show that the node degree k significantly correlates
with closeness and betweenness centralities (Figure 3c-d).
This finding can be explained by similar mechanisms to
these generating the scale-free property in other networks.
In scale-free models, it is well-known that high-connectiv-
ity nodes also exhibit high betweenness and closeness
centralities. Therefore, this finding is consistent with the
observation of a scale-free topology revealed in the ther-
apy network. However, it is worth noticing that the
betweenness centrality does not correlate well to the
number of drug targets.

The finding that significant correlations between these
measures are present suggests the existence of organizing
principles behind the man-made drug-therapy/disease

http://www.biomedcentral.com/1471-2210/8/5

system. The chemical information that connects distant
diseases and drugs composed of chemical compounds is
routed through a small number of drug-therapy nodes
having wide influence in the global network. Future
multi-target drugs might be designed using similar base-
lines.

Multi-target drugs

Previous studies have revealed that the distribution of tar-
gets associated to approved drugs follows a power-law
[28]. A majority of drugs act on only one target, but a
small number of drugs act on a large number of targets,
which can reach up to 14. The development of drugs that
are able to affect multiple targets is seen as promising for
treating complex diseases [29,30]. A special role must be
played by these drugs which combine the two properties
of (a) having a high betweenness centrality value and (b)
acting on multiple targets. These drugs occupy pivotal
positions in the drug-therapy network, as they not only
connect heterogeneous therapies but also influence mul-
tiple metabolic pathways. Several drugs identified in
Table 1 meet these two criteria, including Hydroxocobala-
min, Vitamin B3, Vitamin B12, Atropine, Orphenadrine, and
Procaine.

Discussion

The importance of studying the global interactions
involved in the action of drugs has been widely recog-
nized recently. Goh et al. [17] presented a detailed net-
work analysis of the interactions between human genes
and diseases. These interactions define a bipartite network
consisting of two sets of nodes. While one set represents
genetic disorders, the other set corresponds to all known
disease-related genes. In the disease network, the number
of genes related to a given disorder exhibits a broad distri-
bution. In addition, this projection shows a skewed
degree distribution represented by a generalized power-
law, where a few disorders like colon cancer (linked to k =
50 other disorders) and breast cancer (k = 30) are con-
nected to a large number of different disorders. In con-
trast, we here investigated the drug-therapy bipartite
network. The therapy projection, where therapies are con-
nected if a drug implicated in both therapies exists, also
revealed a fat-tailed distribution that deviates from a ran-
dom case and suggests the prominence of some diseases
among others.

Paolini et al. [31] constructed a target protein network by
integrating several pharmacological resources and studied
the properties of this pharmacological space using several
chemical quantities: binding affinities, molecular weights,
promiscuity, and octanol/water partition coefficients
(clogP). Ma'ayan et al. [29] and Yyldyrym et al. [32] in par-
allel explored the relationships between drugs and their
targets by the means of a drug-target network and its drug
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and target proteins projections. Topological features of
both projections revealed an apparent scale-free like
degree distributions. Furthermore, disease-related genes
and drug targets showed a small average shortest distance.
A significant shift was observed toward higher weights in
the distribution of shortest paths when targets of drugs
approved in the last 10 years were compared to these
approved before 1996. This reveals a move toward more
rational drug design and reflects the importance of devel-
oping new multi-target drugs that shorten the average dis-
tance in the drug-target network. Our results in both drug
and therapy projections support the idea of networks
where distances between node pairs are short in average.

However, none of these works analyzed the relationships
between drugs and therapies. This analysis provides the
first view of the relationships between therapies, as
defined by drug-therapy interactions, revealing that dis-
tant therapies are separated by a low number of chemical
compounds. It reveals the role of particular drugs with
high betweenness centralities in connecting network com-
ponents of distinct therapy classes. In the future, the com-
bination of this analysis with the above-mentioned works
should lead to the construction of an integrated tri-partite
network. New network analysis of this integrated network
can be expected to reveal fundamental properties of the
global relationships between drugs, their targets, and dis-
eases.

Conclusion

Even though new high-throughput technologies have
been developed generating large amounts of genomic
data, drug design has not followed the same development
and it is still complicated and expensive to develop new
single-target drugs. In contrast, new findings suggest that
multi-target drugs not only maximize the number of pos-
sible points of action but also introduce novel network
disruption and systems-oriented strategies [12,13]. There-
fore, multi-target drug design combined with a network-
dependent approach [11] create a promising concept to
combat diseases based on multi-genetic disorders such as
cancer, and diseases that involve a variety of cell types
such as immunoinflamatory disorders and diabetes [33].
Although the application of these strategies to drug devel-
opment is still incipient, early results are encouraging [34]
and suggest that the control of a complex disease system
should consist in the simultaneous disruption of multiple
targets located in distant network pathways.

Methods

Database and ATC classification

The DrugBank database is a bioinformatics and chemoin-
formatics resource developed by the University of Alberta
that contains detailed drug and drug target information
[14]. The database contains nearly 4300 drug entries

http://www.biomedcentral.com/1471-2210/8/5

including 1200 small molecule drugs approved by the US
Food and Drug Administration (FDA). Each entry con-
tains more than 80 data fields with detailed chemical,
pharmacological and pharmaceutical drug data as well as
sequence, structure and pathway information of drug tar-
gets.

The Drug Category field contains information on the ther-
apeutic properties and general category of the drug. Ther-
apeutic properties are entered following the Anatomic
Therapeutic Chemical (ATC) classification [15]. The ATC
system is used by the World Health Organization as an
international standard for drug utilization studies. It
divides drugs into different groups according to the organ
or system on which they act and their chemical, pharma-
cological and therapeutic properties. Drugs are classified
in groups at five different levels. The first level of the code
is based on a letter for the anatomical group and consists
of one letter; there are 14 main groups. The second level
of the code is based on the therapeutic main group. The
third and fourth levels are chemical/pharmacological/
therapeutic subgroups and the fifth level is the chemical
substance. The hierarchical structure of the ATC classifica-
tion provides an ideal framework for analyzing the rela-
tions between drugs and therapeutic applications. Each
level of the ATC classification reveals complementary
information, making it possible to navigate between dif-
ferent resolutions.

Network construction

We extracted the set of ATC identifiers associated to each
FDA-approved drug to construct a bipartite network of
drugs and therapies. 186 drugs had no ATC identifier and
were discarded, leaving a network of 1014 drugs. Two pro-
jections of this bipartite network can be constructed. In
the drug projection, nodes represent drugs and two nodes
are connected if they share a common therapeutic prop-
erty. In the therapy projection, nodes represent therapies
and two nodes are connected if a common drug belongs
to the two therapeutic category. Thanks to the hierarchical
structure of the ATC classification, five possible networks
can be constructed for each of these two projections. In
the therapy projection, the number of nodes decreases at
lower ATC levels as several therapies are merged. In the
drug projection, the number of nodes is independent of
the ATC level but the number of edges increases at lower
levels. Networks were drawn using the Cytoscape software
[35].

Definition of network metrics

Betweenness (B;) is a centrality measure of a node in a
network. This metric goes beyond local information and
reflects the role played by a node in the global network
architecture. It is calculated as the fraction of shortest
paths between node pairs that pass through a given node.
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For a graph G := (V,E) with n nodes, the betweenness B; for
anode i reads as:

_ 1 s s¢(1)
B"_(n—1)(n—2) 2 sS

s#i#teV st

where oy, is the number of shortest paths from s to ¢, and
o,(i) the number of shortest paths from s to ¢ that pass
through a node i [23]. This measure is normalized by the
number of pairs of nodes without including i, that is (n -

1)(n-2).

Closeness centrality (C;) measures how close a node i is
to all others in the same network and is defined as the
average mean path between a node i and all other nodes
reachable from it:

_ n

Ci=—< =
X d(i.j)
jev

where d(i,j) is the shortest distance between nodes i and j,
and n is the number of nodes in the network [27].

Average shortest path is defined as the average number of
steps along the shortest paths for all possible pairs of net-
work nodes. This metric indicates the efficiency of infor-
mation flow in a network.

Node degree & is the number of edges connected to a
given node.
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