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Abstract

Background: Accumulated evidence suggests that insulin resistance and impairments in cerebral
insulin receptor signaling may contribute to age-related cognitive deficits and Alzheimer's disease.
The enhancement of insulin receptor signaling is, therefore, a promising strategy for the treatment
of age-related cognitive disorders. The mitochondrial respiratory chain, being involved in insulin-
stimulated H,O, production, has been identified recently as a potential target for the enhancement
of insulin signaling. The aim of the present study is to examine: (I) whether a specific respiratory
substrate, dicholine salt of succinic acid (CS), can enhance insulin-stimulated insulin receptor
autophosphorylation in neurons, and (2) whether CS can ameliorate cognitive deficits of various
origins in animal models.

Results: In a primary culture of cerebellar granule neurons, CS significantly enhanced insulin-
stimulated insulin receptor autophosphorylation. In animal models, CS significantly ameliorated
cognitive deficits, when administered intraperitoneally for 7 days. In |6-month-old middle-aged
C57BI/6 mice (a model of normal aging), CS enhanced spatial learning in the Morris water maze,
spontaneous locomotor activity, passive avoidance performance, and increased brain N-
acetylaspartate/creatine levels, as compared to the age-matched control (saline). In rats with
chronic cerebral hypoperfusion, CS enhanced spatial learning, passive avoidance performance, and
increased brain N-acetylaspartate/creatine levels, as compared to control rats (saline). In rats with
beta-amyloid peptide-(25—35)-induced amnesia, CS enhanced passive avoidance performance and
increased activity of brain choline acetyltransferase, as compared to control rats (saline). In all used
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models, CS effects lasted beyond the seven-day treatment period and were found to be significant

about two weeks following the treatment.

Conclusion: The results of the present study suggest that dicholine salt of succinic acid, a novel
neuronal insulin sensitizer, ameliorates cognitive deficits and neuronal dysfunctions in animal
models relevant to age-related cognitive impairments, vascular dementia, and Alzheimer's disease.

Background

A large body of accumulated evidence suggests that insu-
lin resistance and impairments in cerebral insulin receptor
signaling may contribute to age-related cognitive deficits
and Alzheimer's disease (AD) [1-10]. The enhancement of
brain insulin receptor signaling is, therefore, a promising
strategy for the treatment of age-related cognitive disor-
ders. Optimal insulin receptor signaling requires hydro-
gen peroxide (H,0,) generated in cells during insulin
stimulation [11-17]. The mitochondrial respiratory chain,
being involved in insulin-stimulated H,O, production,
has been identified recently as a potential target for the
enhancement of insulin signaling [18]. The rate of insu-
lin-stimulated H,O, production depends on the concen-
tration of respiratory substrate, succinate [19].

The aim of the present study is to examine: (1) whether a
specific respiratory substrate, dicholine salt of succinic
acid (CS), can enhance insulin-stimulated insulin recep-
tor autophosphorylation in neurons, and (2) whether CS
can ameliorate cognitive deficits of various origins in ani-
mal models.

Results

Dicholine salt of succinic acid enhances insulin-stimulated
insulin receptor autophosphorylation in neurons

To examine whether CS enhances the insulin-stimulated
autophosphorylation of insulin receptor in neurons, we
studied an effect of CS on insulin-stimulated insulin
receptor autophosphorylation in a primary culture of rat
cerebellar granule neurons (CGN). Figure 1 shows that,
whereas by itself, 50 umol/L of CS does not stimulate
insulin receptor autophosphorylation significantly (P =
0.065 vs. control), this concentration of CS significantly
enhances the effect of suboptimal concentration of 5
nmol/L insulin (P < 0.001 vs. 5 nmol/L insulin). CS sig-
nificantly enhances insulin-stimulated insulin receptor
autophosphorylation in the range of concentrations from
10 to 100 pmol/L (P < 0.05 vs. 5 nmol/L insulin),
although no significant difference is observed between the
effects of different concentrations of CS. These results sug-
gest that CS is a neuronal insulin sensitizer, which works
in concert with insulin to stimulate insulin receptor auto-
phosphorylation in neurons.

Dicholine salt of succinic acid improves cognition and
neuron functioning in middle-aged mice

To examine whether dicholine salt of succinic acid can
ameliorate age-related cognitive deficits, 16-month-old
middle-aged C57Bl/6 mice (mean life span of these mice
is 26 to 28 months [20]) were treated with CS (1 to 25 mg/
kg, i.p.) orsaline (control, i.p.) for seven consecutive days.
Then, behavioral tests and measurement of whole-brain
N-acetylaspartate/creatine (NAA/Cr) ratio by proton mag-
netic resonance spectroscopy (1H-MRS) in vivo were car-
ried out on days as indicated in the experimental schedule
(Figure 2). 5-Month-old young adult mice were treated
with i.p. saline for 7 days.

As shown in Figure 3, there was a significant difference in
spontaneous locomotor activity in the open field between
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Effects of CS on the autophosphorylation of insulin
receptor in cerebellar granule neurons. CGN cultures
were stimulated with insulin, CS, or combinations of insulin
and CS at indicated concentrations for 20 min. Autophos-
phorylation of insulin receptor was measured as described in
Materials and Methods. In each experiment, amount of phos-
phorylated insulin receptor B-subunit (pYpY-IR) was normal-
ized to total amount of insulin receptor -subunit and
expressed as a percentage of the response produced to 100
nmol/L insulin. Columns represent the means + SEM of
pYPY-IR values obtained from five to nine separate experi-
ments, each performed in duplicate. *P < 0.05 vs. control. TP
< 0.05 vs. insulin 100 nmol/L, #¥P < 0.05 vs. insulin 5 nmol/L.
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Figure 2

Experimental schedule of studies in middle-aged
C57BI/6 mice. Mice were treated with CS (i.p. for 7 days)
or saline (i.p. for 7 days, control) and then tested. LA, loco-
motor activity. PA, step-down passive avoidance. MWM,
Morris water maze. MRS, 'H-MRS in vivo.

control middle-aged mice and young adult mice (P <
0.001). CS significantly increased the locomotor activity
of middle-aged mice, as compared to age-matched con-
trols, when administered in doses of 1-25 mg/kg (P <
0.05).

As shown in Figure 4, there was no significant difference
in step-down latencies in the passive avoidance test
between young adult mice, control middle-aged mice,
and CS-treated middle-aged mice on a day of acquisition
trial. However, 24 hours later, in the retention test, mid-
dle-aged mice exhibited a significant decrease in step-
down latencies (P < 0.05) as compared to young adult
mice, indicating a learning deficit induced by aging. CS
increased retention latencies in middle-aged mice, as
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Figure 3

Effects of CS on spontaneous locomotor activity in
middle-aged mice. Spontaneous locomotor activity in
mice was evaluated in the open field test on the day as indi-
cated in the experimental schedule (Figure 2). YNG, young
adult mice (i.p. saline for 7 days); MID, middle-aged mice (i.p.
saline for 7 days, control); CS1, CSI10, and CS25, middle-aged
mice treated i.p. for 7 days with CS in doses of I, 10, or 25
mg/kg respectively. Each group comprised a minimum of
eight mice. Columns represent the means + SEM of locomo-
tor activity counts during a 3-min observation period. *P <
0.05 vs. MID. P < 0.05 vs. YNG.
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Effects of CS on learning in the step-down passive
avoidance test in middle-aged mice. Step-down laten-
cies in passive avoidance task were measured during acquisi-
tion trial and, 24 hours later, during retention trial on days as
indicated in the experimental schedule (Figure 2). A: Acquisi-
tion trial. B: Retention trial. YNG, young adult mice (i.p.
saline for 7 days); MID, middle-aged mice (i.p. saline for 7
days, control); CSI, CS10, and CS25, middle-aged mice
treated i.p. for 7 days with CS in doses of I, 10, or 25 mg/kg
respectively. Each group comprised a minimum of eight mice.
Columns represent the step-down latencies means + SEM. *P
< 0.05 vs. MID. tP < 0.05 vs. YNG.

compared to age-matched controls, when administered in
doses of 10 and 25 mg/kg (P < 0.05). These data suggest
that CS significantly improves passive avoidance learning
in middle-aged mice, as compared to the age-matched
controls.

As shown in Figure 5, both path length and latency to
escape to the hidden platform in the Morris water maze
decreased progressively (i.e., learning was progressive)
during the 4-day training period in all groups of mice.
Two-way ANOVA revealed significant day effect in all
experimental groups (P < 0.01). There was a significant
difference, however, between middle-aged mice and
young adult mice on the third day (P < 0.01 for both
measures) and the fourth day (P < 0.001 for both meas-
ures) of the training, indicating that spatial learning in
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Figure 5

Effects of CS on spatial learning in the water-maze test in middle-aged mice. Path lengths and latencies to escape to
the hidden platform in water maze were measured during the 4-day training period on days as indicated in the experimental
schedule (Figure 2). A, B: The day | of the trial. C, D: The day 2 of the trial. E, F: The day 3 of the trial. G, H: The day 4 of the
trial. YNG, young adult mice (i.p. saline for 7 days); MID, middle-aged mice (i.p. saline for 7 days, control); CSI, CSI0, and
CS25, middle-aged mice treated i.p. for 7 days with CS in doses of I, 10, or 25 mg/kg respectively. Each group comprised a
minimum of eight mice. Columns represent the path lengths or latencies means + SEM. *P < 0.05 vs. MID. TP < 0.05 vs. YNG.
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middle-aged mice was slower, as compared to young
adult mice. Two-way ANOVA revealed significant group
effect across days (F1,16 = 26.9, P < 0.01) and group x day
interaction (F1,3,70 = 7.51, P < 0.05), when groups of
young adult and middle-aged mice were compared. CS
significantly decreased the escape latencies in middle-
aged mice, as compared to age-matched controls, at the
fourth day of the training, when administered in doses of
1-25 mg/kg (P < 0.05). Two-way ANOVA revealed signif-
icant effect for CS doses of 1 mg/kg (F1,14 = 8.47, P <
0.05) and 25 mg/kg (F1,15 = 7.26, P < 0.05) across days
and significant both group effect (F1,14 = 10.48, P < 0.05)
and group x day interaction (F1,1,62 = 6.79, P < 0.05) for
dose of 10 mg/kg. CS significantly decreased the path
lengths in middle-aged mice, as compared to age-matched
controls, on the day 4 of training, when administered in
doses of 1-25 mg/kg (P < 0.05). Two-way ANOVA
revealed significant group effects for CS doses of 1 mg/kg
(F1,14 = 8.01, P < 0.05) and 25 (F1,15 = 6.95 P < 0.05)
across days and significant both group effect (F1,14 =
9.84, P < 0.05) and group x day interaction (F1,1,62 =
7.01, P < 0.05) for CS dose of 10 mg/kg. These data sug-
gest that CS significantly improved spatial learning in
middle-aged mice, as compared to the age-matched con-
trols.

N-Acetylaspartate/creatine (NAA/Cr) ratio is widely
believed to be a reliable noninvasive marker of neuronal
function and viability in the adult brain. As shown in Fig-
ure 6, middle-aged mice exhibited a significant 30% drop
in whole-brain brain NAA/Cr levels (P < 0.001) by data of
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TH-MRS in vivo study, as compared to young adult mice,
thus indicating age-related decline in neuronal function.
When administered in doses of 10 and 25 mg/kg, CS sig-
nificantly increased whole-brain NAA/Cr levels in middle-
aged mice, as compared to the age-matched controls (P <
0.01). These data suggest that CS significantly improved
neuron functioning in middle-aged mice.

Dicholine salt of succinic acid improves cognition and
neuron functioning in rats with chronic cerebral
hypoperfusion

To examine whether CS can ameliorate cognitive deficits
induced by chronic cerebral hypoperfusion, rats with per-
manent bilateral carotid artery occlusion (two-vessel
occlusion, 2VO) were treated with CS (1 to 25 mg/kg, i.p.)
or saline (control) for seven consecutive days, and a bat-
tery of tests were carried out on days as summarized in the
experimental schedule (Figure 7). Sham-operated rats
were treated with i.p. saline for 7 days.

As shown in Figure 8, there was no significant difference
in step-through latencies to enter the dark compartment
in passive avoidance test between sham-operated rats,
control 2VO rats, and CS-treated 2VO rats on the day of
acquisition trial. However, 24 hours later, in the retention
test, 2VO rats exhibited significant decrease in step-
through latencies as compared to sham-operated rats (P <
0.01), indicating a learning deficit induced by chronic cer-
ebral hypoperfusion. CS significantly increased retention
latencies in 2VO rats, as compared to control 2VO rats,
when administered in doses of 1-25 mg/kg (P < 0.05).
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Effects of CS on brain NAA/Cr levels in middle-aged mice. NAA/Cr levels in brains of mice were measured by 'H-MRS
in vivo on day as indicated in the experimental schedule (Figure 2). A: Brain NAA/Cr levels. YNG, young adult mice (i.p. saline
for 7 days); MID, middle-aged mice (i.p. saline for 7 days, control); CSI, CS10, and CS25, middle-aged mice treated i.p. for 7
days with CS in doses of I, 10, or 25 mg/kg respectively. Each group comprised a minimum of eight mice. Columns represent
the NAA/Cr means + SEM expressed as a percentage of the mean NAA/Cr in brains of young adult mice. *P < 0.05 vs. MID. tP
< 0.05 vs. YNG. B: Representative 'H MRS spectra from control young adult mice (YNG), middle-aged mice (MID), and mid-
dle-aged mice treated with CS in dose of 25 mg/kg (CS25). Signal assignment: NAA, methyl protons of NAA; Cr, methyl pro-

tons of Cr.
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Figure 7

Experimental schedule of studies in 2VO rats. Rats
were undergone to bilateral occlusion of the common
carotid arteries (2VO) and three hours later the treatment
was started. Rats received CS or saline (control) i.p. for 7
days and then tested. PA, step-through passive avoidance.
MWM, Morris water maze. MRS, 'H-MRS in vivo.

These data suggest that CS significantly improved passive
avoidance learning in rats with chronic cerebral hypoper-
fusion.

Figure 9 shows that path length to escape to the hidden
platform in Morris water maze task decreased during the
2-day training period, in all groups of rats. There was,
however, a significant difference between control 2VO
rats and sham-operated rats on the first day and the sec-
ond day of training (P < 0.01), indicating impairments in
spatial learning induced by chronic cerebral hypoper-
fusion. CS significantly decreased the path lengths in 2VO
rats, as compared to control 2VO rats, on day 1 and, par-
ticularly, on day 2 of training, when administered in doses
of 1-25 mg/kg (P < 0.01). These data suggest that CS sig-
nificantly improved spatial learning in rats with chronic
cerebral hypoperfusion.

As shown in Figure 10, 2VO rats exhibited a significant
22% decrease in whole-brain NAA/Cr levels, as compared
to sham-operated rats (P < 0.001), indicating impair-
ments in neuronal function induced by chronic cerebral
hypoperfusion. CS significantly increased whole-brain
NAA/Cr levels in 2VO rats, as compared to controls, when
administered in doses of 1-25 mg/kg (P < 0.05).

There was no significant difference between 2VO rats
treated with choline chloride (10 mg/kg, i.p. for 7 days)
and control 2VO rats (saline, i.p. for 7 days) in passive
avoidance performance (P = 0.10) and in spatial learning
(P = 0.11). Hence, choline chloride, a reference choline
compound, showed no significant therapeutic effect on
cognitive deficits in 2VO rats. However, MRS data indicate
a role of choline in normalization of NAA/Cr deficits.

Dicholine salt of succinic acid improves learning and
increases activity of brain choline acetyltransferase in rats
with f-amyloid peptide-(25-35)-induced amnesia

To examine whether CS can ameliorate cognitive deficits
induced in rats by a single injection of 3-amyloid peptide-

http://www.biomedcentral.com/1471-2210/8/1

125+
1004
751
50

ZZ;E]_-_- 1 [ [

SH CTR CH CS1 CS10 (CS25

Latency, s

1251
1004 *
75
50 -

Latency, s

25

SH CTR GCH CS1 CSi0 CS25

Figure 8

Effects of CS on learning in the step-through passive
avoidance test in 2VO rats. Step-through latencies in pas-
sive avoidance task were measured during acquisition trial
and, 24 hours later, during retention trial on days as indi-
cated in the experimental schedule (Figure 7). A: Acquisition
trial. B: Retention trial. SH, sham-operated rats (i.p. saline for
7 days); CTR, 2VO rats (i.p. saline for 7 days, control); CH,
2VO rats treated i.p. for 7 days with choline chloride in dose
of 10 mg/kg; CSI1, CS10, and CS25, 2VO rats treated i.p. for
7 days with CS in doses of |, 10, or 25 mg/kg respectively.
Each group comprised a minimum of nine rats. Columns rep-
resent the step-through latencies means + SEM. *P < 0.05 vs.
CTR. P < 0.05 vs. SH.

(25-35) into the brain nucleus basalis magnocellularis
(NBM), the B-amyloid peptide-(25-35)-induced rats were
treated with CS (1 to 25 mg/kg, i.p.) or saline (control) for
seven consecutive days. Sham-operated rats induced by a
single injection of saline into the brain NBM were treated
with i.p. saline for 7 days. Step-through passive avoidance
test and measurement of activity of choline acetyltrans-
ferase (ChAT) in brain cortex homogenates were carried
out on days, as indicated in the experimental schedule

(Figure 11).

As shown in Figure 12, there was a significant difference
in step-through latencies to enter the dark compartment
in passive avoidance test between sham-operated rats and
control B-amyloid peptide-(25-35)-induced rats, on the
day of acquisition (P < 0.05), and 24 hours later, on the
day of retention trials (P < 0.01). On the day of acquisi-
tion trials, CS significantly decreased step-through laten-
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Figure 9

Effects of CS on spatial learning in the water-maze
test in 2V O rats. Path lengths to escape to the hidden plat-
form in water maze were measured during the 2-day training
period on days as indicated in the experimental schedule
(Figure 7). A: The day | of the trial. B: The day 2 of the trial.
SH, sham-operated rats (i.p. saline for 7 days); CTR, 2VO
rats (i.p. saline for 7 days, control); CH, 2VO rats treated i.p.
for 7 days with choline chloride in dose of 10 mg/kg; CSI,
CSI10, and CS25, 2VO rats treated i.p. for 7 days with CS in
doses of |, 10, or 25 mg/kg respectively. Each group com-
prised a minimum of eight rats. Columns represent the path
lengths means + SEM. *P < 0.05 vs. CTR. TP < 0.05 vs. SH.

cies, as compared to the controls, when administered in
doses of 10 and 25 mg/kg (P < 0.01). On the day of reten-
tion trials, CS significantly increased step-through laten-
cies, as compared to the control, when administered in
doses of 10 and 25 mg/kg (P < 0.01). These data suggest
that CS significantly improves passive avoidance learning
in rats with B-amyloid peptide-(25-35)-induced amnesia.

As shown in Table 1, there was a significant 27% decrease
in ChAT activity in the control B-amyloid peptide-
(25-35)-induced rats, as compared to sham-operated rats
(P < 0.001), indicating cholinergic dysfunction induced
by B-amyloid peptide-(25-35) toxicity. CS significantly
increased ChAT activity in rats with B-amyloid peptide-
(25-35)-induced amnesia, when administered in the
highest studied dose of 25 mg/kg (P < 0.05 vs. control).

http://www.biomedcentral.com/1471-2210/8/1
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Figure 10

Effects of CS on brain NAA/Cr ratios in 2VO rats.
NAA/Cr levels in brains of rats were measured by 'H-MRS in
vivo on day as indicated in the experimental schedule (Figure
7). SH, sham-operated rats (i.p. saline for 7 days); CTR, 2VO
rats (i.p. saline for 7 days, control); CH, 2VO rats treated i.p.
for 7 days with choline chloride in dose of 10 mg/kg; CSI,
CS10, and CS25, 2VO rats treated i.p. for 7 days with CS in
doses of |, 10, or 25 mg/kg respectively. Each group com-
prised from five to nine animals. Columns represent the
NAA/Cr means + SEM expressed as a percentage of the
mean NAA/Cr in brains of sham-operated rats. *P < 0.05 vs.
CTR. tP < 0.05 vs. SH.

Choline chloride (10 mg/kg, i.p.), the reference choline
compound, showed no significant effect on passive avoid-
ance learning and cerebral ChAT activity in rats with B-
amyloid peptide-(25-35)-induced amnesia, when admin-
istered for 7 days.

Discussion

In the present study we identified a highly effective treat-
ment of cognitive deficits of various origins with
dicholine salt of succinic acid, the neuronal insulin sensi-
tizer.

Initially, we examined whether CS can work as an insulin
sensitizer in the brain. It is generally accepted that insulin
signaling requires autophosphorylation of the insulin

Beta-Amyloid (-14" day)
CS, i.p.

012345678 91011121314151617.181920
PA  ChAT

(Days)

Figure 11

Experimental schedule of studies in 3-amyloid pep-
tide-(25-35)-induced rats. Rats were undergone to a sin-
gle injection of B-amyloid peptide-(25—35) into brain NBM.
Two weeks later, rats were treated with CS or saline (con-
trol) i.p. for 7 days and then tested. PA, step-through passive
avoidance. ChAT, choline acetyltransferase measurement.
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Figure 12

Effects of CS on learning in the step-through passive
avoidance test in rats with 3-amyloid peptide-
(25-35)-induced amnesia. Step-through latencies in pas-
sive avoidance task were measured during acquisition trial
and, 24 hours later, during retention trial on days as indi-
cated in the experimental schedule (Figure I1). A: Acquisi-
tion trial. B: Retention trial. SH, sham-operated rats (i.p.
saline for 7 days); CTR, B-amyloid peptide-(25-35)-induced
rats (i.p. saline for 7 days, control); CH, B-amyloid peptide-
(25-35)-induced rats treated i.p. for 7 days with choline chlo-
ride in dose of 10 mg/kg; CSI, CS10, and CS25, $-amyloid
peptide-(25—35)-induced rats treated i.p. for 7 days with CS
in doses of I, 10, or 25 mg/kg respectively. Each group com-
prised eight rats. Columns represent the step-through laten-
cies means * SEM. *P < 0.05 vs. CTR. tP < 0.05 vs. SH.

receptor kinase at tyrosine residues in the activation loop
of the kinase domain [21-27]. Upon autophosphoryla-
tion, the receptor undergoes a major conformational
change, resulting in unrestricted access of protein sub-
strates and ATP to the kinase active site and an approxi-
mate two-order increase in the kinase activity [28-30]. In
the present study, we demonstrate that, although CS alone
does not stimulate insulin receptor autophosphorylation
significantly, it significantly enhances the response to the
suboptimal insulin concentration. The effect of the com-
bination of insulin and CS is much greater than sum of
effects of insulin and CS taken alone. These results suggest
that CS is a neuronal insulin sensitizer, which works in
concert with insulin to stimulate insulin receptor auto-
phosphorylation in neurons.

http://www.biomedcentral.com/1471-2210/8/1

Table I: Effect of CS on brain ChAT activity in rats with (3-
amyloid peptide-(25-35)-induced amnesia.

Treatment Groups ChAT activity, dpm/mg of tissue

SH 6.15£0.21*
CTR 4.52 + 0.251
CH 4.84 + 0.68
CSl 5.19 £0.35
Csio 5.39 £ 041

CS25 5.72 + 0.38*

ChAT activity in brain cortex homogenates was assayed by
radiometry on the day as indicated in the experimental schedule
(Figure 11). SH, sham-operated rats (i.p. saline for 7 days); CTR, 3-
amyloid peptide-(25—-35)-induced rats (i.p. saline for 7 days, control);
CH, B-amyloid peptide-(25—-35)-induced rats treated i.p. for 7 days
with choline chloride in dose of 10 mg/kg; CSI, CS10, and CS25, B-
amyloid peptide-(25-35)-induced rats treated i.p. for 7 days with CS in
doses of I, 10, or 25 mg/kg respectively. Each group comprised eight
rats. Data represent the ChAT activity means + SEM expressed as
dpm/mg of wet tissue. *P < 0.05 vs. CTR. TP < 0.05 vs. SH.

Dicholine salt of succinic acid is a chemical substance, but
its components, choline and succinate, are naturally
occurring metabolites widely distributed in mammalian
tissues. Average concentrations of succinate and choline
in the blood of healthy humans at rest are 1-9 umol/L
[31] and 7-10 pmol/L [32] respectively. During physical
exercises or severe hypoxia, levels of succinate and choline
increase markedly [33,34]. For example, breath-hold
dives for 1 min and treadmill running increases venous
succinate in humans to 125 and 93 pmol/L respectively
[33]. This means that CS is an effective insulin sensitizer
at physiologically occurring concentrations, typically
observed in mammals during hypoxia or apneic work.

We further investigated the effects of intraperitoneal
administration of CS on cognition and neuronal function
in animals with cognitive deficits of various origins.

To examine whether CS, the neuronal insulin sensitizer,
can ameliorate cognitive deficits induced by normal
aging, experiments with middle-aged C57Bl/6 mice were
carried out. These mice represent a model of a mild cogni-
tive deficit associated with age-related changes in the
expression of genes, including genes with possible roles in
synaptic plasticity and learning [35], while neuronal loss
with aging is relatively rare in mice of this strain [20]. We
demonstrate that CS significantly improves passive avoid-
ance learning, spontaneous locomotor activity, and spa-
tial learning in middle-aged mice, as compared to age-
matched controls. To test whether CS can ameliorate neu-
ronal dysfunction in middle-aged mice, 'H-MRS in vivo
study was carried out in addition to tests listed above. It is
generally accepted that the brain level of N-acetylaspartate
(NAA), frequently expressed as N-acetylaspartate/Creatine
ratio, is a reliable noninvasive marker of neuronal integ-
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rity and functioning, since NAA is localized almost exclu-
sively to neurons in the adult brain and NAA decrease is
closely correlated with neuronal loss or neuronal dysfunc-
tion [36-41]. Reversible NAA deficits reflect a reversible
state of neuronal dysfunction preceding neuronal loss
[42-45]. NAA quantification is, therefore, considered to
be a valuable tool for assessing the effects of potential
neuroprotective therapies. In this study, age-related NAA
deficits in middle-aged mice were reversed after the treat-
ment with CS, indicating the neuroprotective effect of CS.
Taken together, results in middle-aged mice demonstrate
that CS ameliorates both age-related cognitive deficits and
neuronal dysfunction caused by normal aging. These CS
effects were long-lasting beyond the seven-day treatment
period and were found to be significant about two weeks
following the treatment.

To determine whether CS, the neuronal insulin sensitizer,
can ameliorate cognitive deficits induced by chronic cere-
bral hypoperfusion, experiments with 2VO rats were car-
ried out. Although originally described as a rat model for
vascular dementia, the chronic cerebral hypoperfusion
induced by permanent bilateral carotid artery occlusion is
relevant to Alzheimer's disease, since there is also a slowly
developing reduction in cerebral blood flow in this condi-
tion [46]. The two-vessel occlusion causes a chronic
decrease in the cerebral blood flow to 52-64% of the orig-
inal level [47] and induces progressive and long-lasting
cognitive deficit, cholinergic dysfunction, and progressive
neuronal damage in the brain [48,49]. In this study, we
found that CS significantly improved passive avoidance
learning and spatial learning in 2VO rats, as compared to
the control 2VO rats. NAA deficits in brains of 2VO rats
were also reversible on the treatment with CS. Thus, CS
ameliorates both cognitive deficits and neuronal dysfunc-
tion in 2VO rats. These CS effects were long-lasting,
extending beyond the seven-day treatment period, and
were found to be significant ten days following the CS
treatment.

There is evidence that B-amyloid, a hallmark of Alzhe-
imer's disease, can interfere with insulin receptor signal-
ing [50], whereas insulin stimulates clearance and
degradation of B-amyloid and thus prevents B-amyloid
accumulation in the brain [51-53]. Activity of choline
acetyltransferase, a key enzyme of acetylcholine biosyn-
thesis, is reduced in insulin receptor-positive neurons in
Alzheimer's disease and expression of choline acetyltrans-
ferase is increased with insulin stimulation [54]. These
findings provide a rationale for the use of insulin and
insulin sensitizers in the treatment of cognitive deficits
caused by B-amyloid toxicity. In the present study, we
examined the effect of CS, the neuronal insulin sensitizer,
on cognitive deficits induced in rats by a single injection
of B-amyloid peptide-(25-35) into brain nucleus basalis
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magnocellularis. Such injection causes behavioral dysfunc-
tions, impairs learning and memory, and disrupts cortical
cholinergic innervations, thus modeling Alzheimer's dis-
ease [55]. Also, B-amyloid peptide-(25-35) decreases
activity of brain choline acetyltransferase, a key enzyme of
acetylcholine biosynthesis [56]. In the present study, we
demonstrate that CS significantly improves passive avoid-
ance learning and increases ChAT activity in the brains of
B-amyloid peptide-(25-35)-induced rats. The CS effects
lasted beyond the seven-day treatment period and were
found to be significant two weeks following the treat-
ment.

Choline chloride, the reference choline compound, was
used in the present study to discriminate the effects of
choline and succinate moieties in the CS molecule. As
compared to highly effective CS treatment, choline chlo-
ride demonstrated no significant effects on cognitive per-
formance in 2VO rats and rats with B-amyloid peptide-
(25-35)-induced amnesia. However, MRS data reveal a
role for choline in normalization of NAA/Cr deficits in
brain of 2VO rats. This indicates that although CS effects
relates mainly to the action of succinate, the neuroprotec-
tive effect of CS is caused, at least in part, by the presence
of choline moiety in the CS molecule.

Earlier, several lines of evidence have suggested that treat-
ing insulin resistance might improve cognitive function. It
has been reported that rosiglitazone, a peripheral insulin
sensitizer and potent PPAR full agonist, attenuates learn-
ing and memory deficits in Tg2576 Alzheimer mice [57].
In a small pilot study, rosiglitazone appeared to signifi-
cantly improve the cognitive ability of AD patients [58]. In
a Phase II clinical study, rosiglitazone was found to
improve the cognitive ability of mild to moderate AD
patients [59]. It has been proposed that PPARy agonism
induces neuronal mitochondrial biogenesis and improves
glucose utilization leading to improved cellular function
and provides mechanistic support for the improvement in
cognition observed in treatment of Alzheimer's patients
with rosiglitazone [60].

In general, the results of the present study support the idea
that targeting insulin receptor signaling in neurons may
help to reduce both cognitive deficits and neuronal dys-
functions associated with aging and Alzheimer's disease.

Conclusion

The results of the present study suggest that dicholine salt
of succinic acid, the novel neuronal insulin sensitizer,
ameliorates cognitive deficits and neuronal dysfunctions
in animal models relevant to age-related cognitive impair-
ments, vascular dementia, and Alzheimer's disease.
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Methods

Materials

Dicholine succinate salt (2:1), formula
[(CH;),NCH,CH,0OH],*--OOCCH,CH,COO-, was pre-
pared by a reaction of succinic acid with choline base in
the Russian Scientific Center on Drug Safety (Staraya
Kupavna, Moscow region). PhosphoDetect™ Insulin
Receptor (pTyr1162/1163) ELISA kit and Insulin Receptor
(B-Subunit) ELISA Kit were from Calbiochem. Other
materials were purchased from Sigma, ICN, Gibco, Bio-
source, Molecular Probes, or Acros.

Animals

Male Wistar rats and C57Bl/6 mice were from the Labora-
tory of Biological Trials of the Pushchino Branch of She-
myakin-Ovchinnikov Institute of Bioorganic Chemistry
(Pushchino, Moscow Region). Animals were housed in
groups of 4 per cage at a constant temperature 21°C in a
light-controlled room at 14/10 light-dark cycle. Food and
water were freely available. All animal studies were carried
out in accordance with the requirements of our institu-
tional committees for the keeping and use of laboratory
animals and in accordance with the "Principles of Labora-
tory Animal Care" formulated by the National Institutes
of Health. All animals were allocated to experimental
groups randomly, using computer-generated random
numbers.

Neuronal culture

Cerebellar granule neurons (CGN) were prepared from 7-
to 8-day-old Wistar rats as described [61,62]. Cerebellum
was dissected and placed in ice-cold Ca2+/Mg2+-free
Hanks' buffered saline (HBSS) without Phenol Red
(Gibco). After mincing the tissue with fine scissors, the tis-
sue was placed in Ca2*/Mg2+-free HBSS with Phenol Red
and 0.1% trypsin for 15 min at 36°C. Trypsin was inacti-
vated by washing with normal HBSS. Cells were dissoci-
ated by trituration and pelleted in HBSS. Then, the cells
were resuspended in Neurobasal Medium (Gibco) supple-
mented with B-27 Supplement (Gibco), 20 mmol/L KCl,
GlutaMax (Gibco) and penicillin/streptomycin and
plated with density 5 x 10° cells/ml onto 35 mm x 10 mm
sterile cell culture dishes which had been previously
coated with poly-D-lysine. The cultures were maintained
at 36°C in a humidified atmosphere of 5% CO, and 95%
air and fed with supplemented Neurobasal Medium. Cul-
tures were treated on day 3 with 10 pmol/L cytosine arab-
inoside (Sigma) for 24 h to prevent glial proliferation.
CGN at 7 to 8 days were used for experiments.

Insulin receptor phosphorylation assay

Amounts of double phosphorylated B-subunit of insulin
receptor (pYpY-IR) were measured by PhosphoDetect™
insulin receptor (pTyr1162/1163) ELISA kit (Calbio-
chem) suitable for studies with rat insulin receptor. CGN
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cultures were incubated in Hepes-buffered salt solution
(145 mmol/L NaCl, 5.6 mmol/L KCl, 1.8 mmol/L CaCl,,
1 mmol/L MgCl,, 20 mmol/L HEPES, and 5 mmol/L glu-
cose) at pH 7.4 for 30 min, followed by exposure to vehi-
cle, insulin, CS, or combinations of insulin with CS for 20
min. The experiment was terminated by removing the
medium, washing with ice-cold PBS, and adding 120 pL
per dish cell lysis buffer (Biosource) supplemented with 1
mmol/L PMSF, 50 mmol/L protease inhibitor set III
(Sigma), and 2 mmol/L sodium ortovanadate as the
inhibitor of tyrosine phosphatases at 4°C for 20 min.
Lysates were centrifuged at 12,000 rpm at 4 °C for 12 min.
In each CGN lysate, pYpY-IR amounts were measured as
described by the manufacturer's manual. Obtained values
were normalized to total amounts of insulin receptor B-
subunit (IR) measured by insulin receptor (B-subunit)
ELISA kit (Calbiochem). The results are expressed as a per-
centage of the response produced to 100 nmol/L insulin.

Two-vessel occlusion

Experimental cerebral hypoperfusion was induced in rats
by permanent bilateral occlusion of the common carotid
arteries (two-vessel occlusion, 2VO) as described [47]. The
rats were anesthetized with sodium pentobarbital (40 mg/
kg, i.p.) and the common carotid arteries of the rat were
separated from the cervical sympathetic and vagal nerves
through a ventral cervical incision. Then, the arteries were
ligated with silk sutures. The same surgical procedure was
performed in the sham-operated rats but without the
actual ligation.

-Amyloid peptide-(25-35) injection

B-Amyloid peptide-(25-35)-induced amnesia in rats was
induced as described previously [55]. The rats were anes-
thetized with sodium pentobarbital (30 mg/kg, i.p.) and
B-amyloid peptide-(25-35) was injected bilaterally into
nucleus basalis magnocellularis of rat brain as a sterile solu-
tion of 2 pg per 1 pL of saline per side through the guide
cannula with Hamilton microsyringe according to stereo-
taxic coordinates: AP -1.5, DL+ 2.7, and H 8.1 [63]. Sham-
operated rats were injected bilaterally into NBM with 1 uL
of saline.

Behavioral tests

Spontaneous locomotor activity of mice was evaluated in
open field tests in an automated mode using the Opto-
Varimex-3 (Columbus Instruments, OH) photocell-based
activity monitor. The Opto-Varimex-3 animal activity
monitor employs a photocell beam grid. Animals were
placed individually into the activity monitor and sponta-
neous locomotor activity (total accumulated counts of a
horizontal single photocell interruption) was collected for
a 3-min period.
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The apparatus for step-down passive avoidance test con-
sisted of abox (22 x 24 x 27 cm) with a stainless-steel grid
floor. A circular Plexiglas platform (diameter, 8 cm;
height, 2 cm) was fixed at the center of the box. During the
training, each mouse was placed individually on the plat-
form. When the mouse stepped down from the platform
and placed its four paws on the grid floor, an electric
shock 1.0 mA was delivered for 3 s. The retention trial was
carried out twenty-four hours after the training session in
a manner similar to the training except that no electric
shock was delivered via grid floor. Each mouse was placed
again on the platform, and step-down latency was
recorded until 180 s had elapsed.

A step-through box for passive avoidance test consisted of
a light compartment connected to a dark compartment by
a controllable door. This test consisted of two trials. In the
acquisition trial, the rats were individually placed into the
light compartment, the door to a dark compartment was
opened, and the latency until the rat entered the dark
compartment was recorded. After the rat had stepped
through the door, the door was closed and an electric
shock 0.8 mA was delivered for 1 s via the grid floor. After
receiving the footshock, the rat was returned to a home
cage. The retention trial was carried out twenty-four hours
after the acquisition trial. In the retention trial, each ani-
mal was placed into the light compartment, and the step-
through latency was recorded until 180 s had elapsed.

The water maze test was performed as described by Morris
[64]. The experimental apparatus consisted of circular
water pool (diameter, 120 cm; height, 60 cm) containing
water at 24°C to a depth of 40 cm and rendered opaque
by adding milk. A Plexiglas escape platform (8 x 8 cm for
mice or 10 x 10 cm for rats) was submerged 1.5 cm (for
mice) or 2 cm (for rats) below the water surface and
placed at the midpoint of one quadrant. The location of
the platform remained the same throughout the training
period. The pool was located in a test room containing
various prominent visual cues. Six training trials per day
were conducted with an inter-trial interval of 2 min. Ani-
mals were placed in the pool at one of six starting posi-
tions. In each training trial, the time and path length
required to escape onto the hidden platform was
recorded. Results of six training trials were averaged to
obtain a single representative value, and the averages were
used for final statistics. Animals that found the platform
were allowed to remain on the platform for 30 s and were
then returned to the home cage during the inter-trial inter-
val. Animals that did not find the platform within 120 s
were softly guided to the platform for 30 s at the end of the
trial.

All behavioral experiments were carried out by investiga-
tors blinded to treatment groups.
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'H-MRS measurements in vivo

Spectra were recorded at 'H frequency 400 MHz using the
Bruker AM-400 WB spectrometer (Bruker, Reinsretten,
Germany) with a vertical magnet equipped with a home-
build probe of outer diameter 70 mm. An animal under
pentobarbital sodium anesthesia (40 mg/kg, i.p.) was
fixed in the probe head, the surface coil (6 mm in diame-
ter for mice or 14 mm in diameter for rats) being posi-
tioned directly onto the skull at animal's sinciput.
Magnetic field homogeneity was optimized by the water
signal. Line widths of 40 to 90 Hz were routinely
obtained. The 'H-MRS spectra were accumulated and
processed as described [65,66]. Metabolite ratios of NAA/
Cr were calculated from the relative peak height measure-
ments using the spectrometer's software. All 'H-MRS
measurements were carried out by investigator blinded to
treatment groups.

Choline acetyltransferase assay

Rats were decapitated under sodium pentobarbital (40
mg/kg, i.p.) anesthesia. Brains were quickly removed and
homogenized. ChAT activity in cerebral cortex homoge-
nates was measured by the method described by Fonnum
[67]. All ChAT measurements were carried out by investi-
gator blinded to treatment groups.

Statistics

Data were analyzed for statistical significance by one-way
analysis of variance (ANOVA). Data of the water maze test
were analyzed for statistical significance by two-way
ANOVA. Values are given as means + SEM. Differences
were considered significant at P < 0.05.
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AD, Alzheimer's disease; ANOVA, analysis of variance;
ChAT, choline acetyltransferase; CGN, cerebellar granule
neurons; Cr, creatine; CH, choline chloride; CS, dicholine
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HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid; 'H-MRS, proton magnetic resonance spectroscopy;
i.p., intraperitoneal; NAA, N-acetylaspartate; NBM,
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