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Background: Compounds targeting the benzodiazepine binding site of the GABAA-R are widely
prescribed for the treatment of anxiety disorders, epilepsy, and insomnia as well as for pre-
anesthetic sedation and muscle relaxation. It has been hypothesized that these various
pharmacological effects are mediated by different GABAA-R subtypes. If this hypothesis is correct,
then it may be possible to develop compounds targeting particular GABAA-R subtypes as, for
example, selective anxiolytics with a diminished side effect profile. The pyrazolo[1,5-a]-pyrimidine
ocinaplon is anxioselective in both preclinical studies and in patients with generalized anxiety
disorder, but does not exhibit the selectivity between α1/α2-containing receptors for an
anxioselective that is predicted by studies using transgenic mice.

Results: We hypothesized that the pharmacological properties of ocinaplon in vivo might be
influenced by an active biotransformation product with greater selectivity for the α2 subunit relative
to α1. One hour after administration of ocinaplon, the plasma concentration of its primary
biotransformation product, DOV 315,090, is 38% of the parent compound. The pharmacological
properties of DOV 315,090 were assessed using radioligand binding studies and two-electrode
voltage clamp electrophysiology. We report that DOV 315,090 possesses modulatory activity at
GABAA-Rs, but that its selectivity profile is similar to that of ocinaplon.

Conclusion: These findings imply that DOV 315,090 could contribute to the action of ocinaplon
in vivo, but that the anxioselective properties of ocinaplon cannot be readily explained by a subtype
selective effect/action of DOV 315,090. Further inquiry is required to identify the extent to which
different subtypes are involved in the anxiolytic and other pharmacological effects of GABAA-R
modulators.
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Background
GABAA receptors (GABAA-R) are pentameric membrane
proteins that belong to the superfamily of cys-loop ligand-
gated ion channels (LGIC), which operate as GABA-gated
Cl--selective channels. GABAA-R mediate most of the fast
inhibitory neurotransmission in the CNS [1-3]. Initially,
two subunits of the GABAA-R named α and β were puri-
fied [4,5] and subsequently their cDNAs were isolated [6].
Twenty related GABAA-R subunits have been so far identi-
fied in mammals (α1–6, β1–4, γ1–3, δ, ε, π, θ, and ρ1–3 [7,8]),
yielding a high degree of potential diversity. If all of these
subunits could randomly co-assemble, more than one
hundred thousand GABAA-R subtypes with distinct subu-
nit composition and arrangement would be formed [9].
The composition of the most abundant GABAA-R type in
the CNS is αβγ, and immunohistochemistry studies sug-
gest that receptors containing α1, β2/3 and γ2 subunits are
the most widespread GABAA-R subtype in adult mamma-
lian brain and represent about 50% of the total receptor
pool [2,10].

Typical αβγ GABAA-Rs harbor two agonist (GABA) bind-
ing sites located at the two α/β subunit interfaces [2,11].
The function of GABAA-Rs can be modulated by various
compounds acting at different allosteric sites located on
GABAA-Rs. The benzodiazepine (BZD) site, which is
located at an α/γ interface [12,13], is the most frequently
targeted site for therapeutic agents, and ligands that
enhance GABAA-R function through positive modulation
at this site possess anxiolytic, sedative, myorelaxant, anes-
thetic and amnestic properties [2,3,10,14]. Based on phar-
macological studies in transgenic mice, it has been
proposed that GABAA-Rs can be classified into the follow-
ing pharmacological classes according to the effects of BZ
site ligands: α1-containing receptors (GABAA1) that medi-
ate sedative effects; α2-containing receptors (GABAA2) that
mediate anxiolytic effects; α3-containing receptors

(GABAA3) that mediate myorelaxation; and α5-containing
receptors (GABAA5) that are involved in learning and
memory processes [7,15,16]. This classification is consist-
ent with the sedative/hypnotic profile of GABAA1-prefer-
ring compounds such as zolpidem and zaleplon [17], but
pharmacological studies in wild-type animals and in man
have raised questions regarding the attribution of anxio-
lytic effects to GABAA2 receptors. In particular, a number
of compounds have been identified that exhibit an anxi-
oselective profile in vivo despite lacking the expected
GABAA2 selectivity. A series of compounds with mixed
preference for α2/α3-containing receptors has been
reported to produce robust anxiolysis in animals without
noticeable sedation, including one compound that exhib-
its selectivity for α3-containing receptors [18-21]. Other
compounds, such as ocinaplon [22] and DOV 51,892
[23], are anxiolytic in humans and animals without unde-
sired side effects such as sedation and myorelaxation, but
do not exhibit strong selectivity among GABAA-Rs sensi-
tive to benzodiazepines (that is, those receptors contain-
ing α1–3 and/or α5-subunits)

One hypothesis that could explain the anxioselective pro-
file of ocinaplon is the presence of one or more biotrans-
formation products that exhibit selectivity at GABAA2
receptors. To test this hypothesis, we characterized the
pharmacological properties of the major biotransforma-
tion product of ocinaplon in dogs, rats and man, DOV
315,090 (Fig. 1), using in vitro radioligand binding and
two-electrode voltage-clamp electrophysiology. We now
report that like its parent compound, DOV 315,090 acts
as a positive modulator at GABA receptors, and like its
parent, does not exhibit marked selectivity among α1–3
and α5 containing receptors. Thus, while DOV 315,090
may contribute to the pharmacological actions of ocina-
plon, the anxioselective profile of ocinaplon cannot be

Structures of diazepam, ocinaplon and DOV 315,090Figure 1
Structures of diazepam, ocinaplon and DOV 315,090.
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explained on the basis of enhanced subunit selectivity on
the part of DOV 315,090.

Methods
Radioligand Binding Assays
HEK293 cells (CRL 1573, American type Culture Collec-
tion, Rockville, MD, USA) were cultured in Dulbecco's
modified Eagle's medium (D-MEM, Invitrogen, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA) and 1% MEM Non-
Essential Amino Acids Solution (Invitrogen, Carlsbad,
CA, USA). cDNAs encoding rat GABAA-R subunits were in
the following vectors: α1 and α5 in pRc/CMV, α2, α3, γ2S
and γ3 in pcDNA3 and β2 in pcDNA1. The cells were tran-
siently transfected (5 μg of each cDNA per 100 mm dish)
using FuGene™ (Roche Diagnostics Corporation) at a 3:1
FuGene:DNA ratio. Transfection efficiency was 50–80%
as measured by co-transfection with green fluorescent
protein cDNA (2.5 μg/100 mm dish). Forty-eight hours
after transfection, cells were washed with ice-cold PBS,
harvested and homogenized. Cell homogenates were cen-
trifuged (100,000 g, 25 min) and washed three times by
homogenization in ice-cold PBS buffer followed by cen-
trifugation at 100,000 g for 25 min. The final pellets were
stored at -20°C until needed.

For competition binding, 100 μg of membrane protein
was incubated in 500 μl of PBS buffer with 0.5 nM
[3H]Ro15–1788 (78.6 Ci/mmol, PerkinElmer Life Sci-
ences) in the presence of diazepam (1 nM – 10 μM,
Sigma-Aldrich), ocinaplon (0.1 – 250 μM, DOV Pharma-
ceuticals) or DOV 315,090 (0.1 – 50 μM, DOV Pharma-
ceuticals) for 1 h at 0°C. The samples were then diluted
with 5 ml of ice-cold buffer and filtered under vacuum
through glass-fiber filters (GF/B Whatman). Filters were
washed 3 times with 5 ml of buffer and the radioactivity
was quantitated by liquid scintillation counting in 5 ml of
Ecolite scintillation fluid (ICN). Non-specific binding
determined in the presence of 100 μM Ro 15–1788
(Sigma-Aldrich) was subtracted from total binding to cal-
culate specific binding. Data were analyzed by non-linear
regression (Prism, Graph-Pad software).

Recording of GABA-Gated Currents from GABAA 
Receptors Expressed in Xenopus Oocytes
cRNAs encoding GABAA-R α1, α2, α3, α5, β2 and γ2S subu-
nits were injected into oocytes from Xenopus laevis. Forty-
eight hours later, measurements of the effects of
diazepam, ocinaplon and DOV 315,090 on GABA-gated
Cl- currents from oocytes expressing GABAA-Rs were per-
formed using a Warner TEVC amplifier (Warner Instru-
ments, Inc., Foster City, CA) (Park-Chung et al., 1999).
GABA (Sigma) was prepared as a 1 M stock solution in
ND96. Microelectrodes of 1–3 MΩ when filled with 3 M
KCl were used to record from oocytes in a recording cham-

ber continuously perfused with ND-96 buffer solution.
During data acquisition, oocytes were clamped at a hold-
ing potential of -70 mV. Drugs were applied by perfusion
at a rate of approximately 50 μl sec-1 for 20 s followed by
a 120 s wash. At the end of each experiment 3 μM of
diazepam was applied as a potentiation control. All exper-
iments were performed at room temperature (22–24°C).

GABA concentration-response data was obtained for each
subunit combination, and the GABA EC10 was determined
by nonlinear regression using the logistic equation. This
concentration of GABA was used for modulation studies.
Peak current measurements were normalized and
expressed as a fraction of the peak control current meas-
urements. Control responses to an EC10 concentration of
GABA were re-determined after every 2 – 4 applications of
modulator + GABA. Percent potentiation is defined as
[I(GABA + Drug)/IGABA)-1] × 100, where I(GABA + Drug) is the cur-
rent response in the presence of diazepam, and IGABA is the
control GABA current. Potentiation data from each oocyte
was fitted to the equation Potentiation = Emax × [Drug]/
([Drug + EC50) by non-linear regression (Prism, Graph-
Pad software). Due to a decline in the response at high
diazepam concentrations, concentrations of diazepam
above 3 μM were excluded from the fit. Some oocytes
expressing α1β1γ2 receptors appeared to exhibit a bipha-
sic modulatory response to diazepam, suggesting the pos-
sible presence of an additional component of modulation
with a sub-nM EC50. For 6 of 8 oocytes, the fit was signif-
icantly improved by adding a second, higher-potency
component of modulation, but the affinity of this second
component was not well resolved in fitting due to its
small amplitude. Given the lack of consistency of this pos-
sible high affinity effect, we have omitted it in fitting our
concentration-effect curves. The choice of fitting to a
monophasic or biphasic equation had only a small effect
on the EC50 for the major component of modulation. For
diazepam, the mean EC50 of the major component was
increased from 35 nM to 42 nM when a two-component
fit was used for those oocytes in which it produced a sig-
nificant improvement in the sum of squares.

Results
Biotransformation of ocinaplon into DOV 315,090 in vivo
As shown in Figure 2, DOV 315,090 appears rapidly in
plasma following i.v. or oral administration of a behavio-
rally active dose of ocinaplon (5 mg/kg) to rats. At 1 h,
corresponding to the time at which the anticonflict effect
of ocinaplon was evaluated [22], the plasma concentra-
tion of DOV 315,090 is ~38% of the concentration of par-
ent compound.
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Comparison of the binding properties of diazepam, 
ocinaplon and DOV 315,090
Figure 3 and Table 1 document the binding properties of
diazepam, ocinaplon and DOV 315,090 in HEK293 cells
expressing different GABAA-R subunit combinations.
Examination of binding constants shows that ocinaplon
and DOV 315,090 have lower affinity than diazepam at
all of the receptor subunit combinations tested. The bind-
ing profile of DOV 315,090 is similar to that of ocinaplon,
with little selectivity among the subunit combinations
tested. In contrast to diazepam, which exhibits markedly
lower affinity for α1β2γ3 and α2β2γ3 receptors than for
α1β2γ2 s and α2β2γ2 s receptors, replacement of γ2S with γ3
had little effect on the affinity of either ocinaplon or DOV
315,090 for any subunit combination (Table 1). Also,
whereas diazepam has similar affinity for α1-containing
and α2-containing receptors, both ocinaplon and DOV
315,090 have 3–4 fold lower affinity for α2-containing
receptors. Specific [3H]Ro15–1788 or [3H]flunitrazepam
binding to membrane preparations from cells transfected
with α3, β2 and γ3 subunits was not detected, suggesting
that these subunits failed to assemble in the HEK293 cells.

Modulation of GABAA-R function by diazepam, ocinaplon 
and DOV 315,090
Consistent with previous studies [22,23], the potency and
efficacy of ocinaplon were lower than diazepam at the
four receptor subtypes analyzed. The highest efficacy was
observed at receptors containing α3 subunits (Table 2).
DOV 315,090 also exhibited the highest maximal poten-
tiation at α3-containing receptors; however, its Emax values
were similar to those of diazepam at receptors containing
α1 or α3 subunits (Table 2).

DOV 315,090 and ocinaplon exhibited similar efficacies
(150% vs. 139% potentiation, respectively) and EC50s
(12.5 μM vs. 9.12 μM, respectively, n = 4) at α2β2γ2S recep-
tors (Figure 4, Table 2). In contrast, whereas ocinaplon
and DOV 315,090 were approximately equipotent at
α3β2γ2S receptors (EC50 = 8.01 μM and 10.21 μM, respec-
tively), the efficacy of DOV 315,090 was almost 1.87 fold
greater than that of ocinaplon (340% vs 181% potentia-
tion) (Figure 4, Table 2). Finally, DOV 315,090 was less
efficacious and potent than ocinaplon at α5β2γ2S receptors
(Figure 4, Table 2). The rank order of potency (EC50) of
the pyrazolopyrimidines at enhancing GABA-gated chlo-
ride currents in receptors containing different α subunits
was: α2≈α3≈α5 < α1 for DOV 315,090, compared to α2≈α3

Pharmacokinetics of ocinaplon and DOV 315,090Figure 2
Pharmacokinetics of ocinaplon and DOV 315,090. Blood levels of ocinaplon (●,❍) and DOV 315090 (▲,�) were 
determined at various times after i.v. (●,▲) or oral (❍,�) administration of 5 mg/kg ocinaplon to rats. Plotted results do not 
include one animal that exhibited a low blood level (0.47 μg/ml) of ocinaplon at the initial 10 min time point after oral adminis-
tration and proportionally lower levels of both compounds throughout the duration of the experiment. This animal may have 
regurgitated a portion of the dose (of the suspension).
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Displacement curves of [3H]Ro 15–1788 binding by diazepam (DZ), ocinaplon and DOV 315,090 in homogenates of HEK293 cells transfected with different subunit combinationsFigure 3
Displacement curves of [3H]Ro 15–1788 binding by diazepam (DZ), ocinaplon and DOV 315,090 in homoge-
nates of HEK293 cells transfected with different subunit combinations. Smooth curves are calculated from the mean 
parameter values in Table 1.
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< α5≈α1 for ocinaplon. Furthermore, DOV 315,090 and
ocinaplon had different efficacy (Emax) profiles; the rank
order of absolute efficacy was α5 < α2 < α1 < α3 for DOV
315,090, as compared with α5 < α1 < α2 < α3 for ocina-
plon.

Discussion
In the CNS, classical 1,4-BZDs such as diazepam, as well
as other ligands of the BZD binding site, act on GABAA-Rs
that are composed of α, β, and γ subunits. The majority of
GABAA receptors contain α1–6, β2/3 and γ2 subunits,
whereas the β1 and γ1/3 subunits have very restricted pat-

terns of expression [2]. It has been shown that BZD phar-
macology is primarily dependent upon the α subunit
subtype present (α1–3 or α5), whereas receptors containing
α4 or α6 subunits are insensitive to "classical" 1,4-BZDs
[7,24,25]. Studies of animals in which genes coding for
specific α subunits have been deleted or mutated to elim-
inate BZD sensitivity (e.g. the α1H101R mutation, which
disrupts the BZD binding site) led to the hypothesis that
the sedative effects of the BZDs are mediated by α1-subu-
nit containing receptors (designated GABAA1-R), whereas
anxiolytic effects are mediated by α2-subunit containing
receptors (GABAA2-R) [7,17,26,27]. GABAA-Rs containing

Table 1: Binding affinity of diazepam, ocinaplon and DOV 315,090 for GABAA-Rs with different subunit composition.

Receptor Type α1β2γ2S α1β2γ3 α2β2γ2S α2β2γ3 α3β2γ2S α5β2γ2S α5β2γ3

diazepam (DZ) IC50 (μM) 0.03 0.22 0.04 0.21 0.05 0.03 0.09
pIC50 7.54 ± 0.09 6.67 ± 0.08 7.50 ± 0.10 6.80 ± 0.26 7.32 ± 0.08 7.57 ± 0.13 7.09 ± 0.13

ocinaplon (OC) IC50 (μM) 6.3 2.3 24 20 7.7 9.6 10
pIC50 5.20 ± 0.14 5.65 ± 0.01 4.62 ± 0.14 4.74 ± 0.15 5.12 ± 0.06 5.02 ± 0.03 5.01 ± 0.18
IC50/DZ IC50 218 10.5 759 115 158 355 120

DOV 315,090 IC50 (μM) 7.0 5.5 24 20 9.3 22 27
pIC50 5.19 ± 0.12 5.27 ± 0.07 4.63 ± 0.05 4.72 ± 0.09 5.08 ± 0.14 4.67 ± 0.08 4.58 ± 0.09
IC50/DZ IC50 220 25 760 120 170 790 323
IC50/OC IC50 1.02 2.40 0.89 0.98 1.09 2.24 2.59

IC50 values were calculated from [3H]Ro15–1788 displacement curves using non-linear regression analysis for each independent experiment. pIC50 
values are averages of the negative logarithms of IC50s. Results from each experiment (n = 3) were fitted independently and fitted parameters were 
averaged to calculate means and SEM. EC50 values were averaged as their negative logarithms (pIC50).

Table 2: Properties of diazepam, ocinaplon and DOV315090 determined by two-electrode voltage clamp electrophysiology using 
Xenopus oocytes injected with cRNA.

Receptor Type α1β2γ2S α2β2γ2S α3β2γ2S α5β2γ2S

diazepam (DZ) EC50 (μM) 0.04 (8) 0.03 (10) 0.092 (5) 0.025 (5)
pEC50 7.46 ± 0.07 7.60 ± 0.044 7.04 ± 0.05 7.51 ± 0.11
Emax, % 144 ± 8.0 157 ± 14 232 ± 31 224 ± 24

ocinaplon (OC) EC50 (μM) 2.93 (4) 9.12 (5) 8.01 (4) 3.5 (4)
pEC50 5.57 ± 0.11 5.04 ± 0.03 5.16 ± 0.14 5.48 ± 0.07
EC50/DZ EC50 77 350 87 139
Emax, % 132 ± 8 150 ± 6 181 ± 18 84 ± 4
Emax/DZ Emax 0.91 0.95 0.78 0.37

DOV315090 (MET) EC50 (μM) 4.87 (4) 12.5 (4) 10.21 (4) 10.14 (4)
pEC50 6.32 ± 0.05 4.92 ± 0.09 5.00 ± 0.05 5.03 ± 0.10
EC50/DZ EC50 128 482 111 405
EC50/OC EC50 1.66 1.37 1.27 2.92
Emax, % 192 ± 4 139 ± 23 * 340 ± 35 * 68 ± 8
Emax/DZ Emax 1.33 0.88 1.46 0.30
Emax/OC Emax 1.45 0.92 1.87 0.81

Drugs were prepared from DMSO stock solution prior to experiment, EC10s of GABA were used, errors are SEM of fitted parameter values from 
the number of oocytes given in parentheses. Results from each oocyte were fitted independently and fitted parameters were averaged to calculate 
means and SEM. EC50 values were averaged as their negative logarithms (pEC50) * For these two cases, the extrapolated Emax exceeded the 
observed maximum observed potentiation by over 25%, but parameter SEM was not substantially increased, indicating that range of concentrations 
was adequate to project Emax. Higher drug concentrations could not be used due to solubility constraints.
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α5 subunits are thought to be responsible for the impair-
ment of learning and memory that is induced by BZDs
[28]. These finding raised the attractive prospect that BZD-
like drugs that specifically target GABAA-Rs that contain a
specific α-subunit will be able to produce the intended
pharmacological effect (e.g sedation or anxiolysis) with
reduced incidence of side effects. Because BZD-like drugs
function as allosteric modulators and do not occupy the
GABA binding site, specificity may be potentially achieved
on the basis of either differences in potency or on differ-
ences in modulatory efficacy at specific receptor subtypes.

Compounds such as zolpidem and zaleplon, which
exhibit higher affinity for α1-containing receptors relative
to other subtypes, have been promoted as sedative agents,
driven in part by the hypothesis that selectivity for
GABAA1-Rs would translate into an improved side-effect
profile, particularly with respect to tolerance, withdrawal,
and abuse liability. Although these compounds are effec-
tive sedative agents, consistent with the identification of
GABAA1-Rs as mediating sedation, the selectivity of these
compounds for GABAA1-Rs vs. GABAA-Rs containing other
α-subunits is generally an order of magnitude or less, and

Potentiation of GABA-gated currents by diazepam, ocinaplon and DOV 315,090Figure 4
Potentiation of GABA-gated currents by diazepam, ocinaplon and DOV 315,090. Rat GABAA-Rs consisting of 
α1β2γ2S, α2β2γ2S, α3β2γ2S and α5β2γ2S subunits were expressed in Xenopus oocytes. Potentiation was determined using an EC10 
concentration of GABA (~10 μM for α1β2γ2S, α2β2γ2S and α3β2γ2S; ~5 μM for the α5β2γ2S). Curves were calculated by normal-
izing values of relative currents obtained following administration of diazepam (❍), ocinaplon (●) or DOV 315,090 (�) in the 
presence of GABA (from at least four oocytes harvested from at least two batches) to the value obtained following application 
of GABA. The dose-response curves of diazepam were fitted up to 3 μM. Higher concentrations (in parentheses) were 
excluded from the fit due to a decline in potentiation at higher concentrations. Smooth curves are calculated based on mean 
parameter values given in Table 2. Asterisks indicate fits for which the extrapolated Emax is more than 25% greater than the 
maximum potentiation observed at highest drug concentration.
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it is unclear to what extent the hypothesized benefits are
achieved in clinical practice [17].

However, the situation is less clear for compounds pos-
sessing anxiolytic properties. Recently published articles
describe the pharmacological properties of two novel anx-
ioselective compounds – ocinaplon [22] and DOV 51892
[23]. These compounds do not exhibit a marked selectiv-
ity among GABAA-Rs containing different diazepam-sensi-
tive subunits (e.g. α1–3 and α5), yet are reported to be
anxioselective, lacking sedative and myorelaxant side
effects at anxiolytic doses. In particular, DOV 51892
exhibits higher efficacy than diazepam at GABAA1-Rs.

The classic BZD diazepam has been shown to act with
high efficacy and similar potency across a broad spectrum
of GABAA-Rs [1,10,22] (Table 2). This lack of selectivity
with respect to either potency or efficacy among the major
GABAA-R types have been hypothesized to account for the
side effects associated with the use of diazepam when
used as an anxiolytic, which include sedation, myorelaxa-
tion, narcosis, and amnesia. However, as has been con-
firmed by in vivo behavioral studies, such side effects are
not observed with ocinaplon (e.g. in motor activity test,
inclined screen and rod walking) or for DOV 51892 (e.g.
rotarod and grip strength tests), even at doses well in
excess of those that enhanced punished responding in the
thirsty rat test [22,23]. Further, ocinaplon is an effective
anxiolytic in humans at doses that do not produce BZD-
like side effects [22]. The present study was designed to
test whether the anxioselective profile of ocinaplon is due
to metabolism into subtype-selective metabolites. Our
pharmacokinetic data demonstrate that in rats, the major
metabolite of ocinaplon is a 4'-N' oxide, DOV 315,090.
Whereas DOV 315,090 is active as a GABAA-R modulator,
and its in vitro binding affinities for recombinant α1β2γ2S,
α2β2γ2S, and α3β2γ2S receptors differ only marginally from
ocinaplon, its affinity for α5β2γ2S receptors is only slightly
lower than that of ocinaplon (~2-fold).

Comparison of the pharmacological profile of ocinaplon
and DOV 315,090 using two electrode voltage clamp elec-
trophysiology (Table 2) shows that the greatest difference
in efficacy occurred at α3β2γ2S receptors. Although a clear
maximum was not attained due to solubility limits, the
extrapolated maximum potentiation by DOV 315,090
was 1.87-fold greater, followed by a 1.45-fold difference
at α1β2γ2S receptors compared to ocinaplon. In contrast,
maximum potentiation by DOV 315,090 was lower than
that of ocinaplon at the α5β2γ2S receptor subtype. The effi-
cacies of DOV 315,090 and ocinaplon at α2β2γ2S receptors
were similar.

These results do not support the hypothesis that the anxi-
oselective profile of ocinaplon is attributable to enhanced

selectivity of its metabolite DOV 315,090 for α2-contain-
ing receptors. Thus, compared to ocinaplon, DOV
315,090 does not exhibit enhanced affinity or potency for
α2-containing receptors over α1-containing receptors,
whereas the difference in efficacy favors α3-, α5-, or α1-
containing receptors over α2-containing receptors. The
present experiments examined GABAA-Rs in two different
heterologous expression systems (Xenopus oocytes and
HEK 293 cells), which may be lacking modulatory pro-
teins or regulatory mechanisms that are only present in
neurons. While we cannot exclude the possibility that
such interactions somehow confer differences in modula-
tor binding or efficacy, such a hypothesis would require
that such interactions modify the structure of the benzo-
diazepine binding site, which is located in the extracellu-
lar domain of the GABAA-R, in such a way as to selectively
alter its interactions with different ligands.

Recent studies suggest that GABAA3-Rs receptors are also
important in mediating anxiolysis [18,20,31-34]. DOV
315,090 has relatively high efficacy at α3β2γ2S, so it is
likely that modulation of GABAA3-Rs by DOV 315,090
contributes to the anxioselective profile of ocinaplon;
however, adipiplon (NG2-73), an α3-selective positive
modulator, has been reported to have sedative/hypnotic
activity [35], suggesting that α3 selectivity is not sufficient
to confer anxioselectivity.

In summary, transgenic mice in which the BZD recogni-
tion site of the α2 subunit is disabled exhibit reduced
diazepam sensitivity in behavioral tests considered to be
predictive of anxiolytic activity, and a similar modifica-
tion to the α1 subunit reduces sensitivity in tests held to be
predictive of sedation [15,26]. These observations have
led to optimism that it will be possible to achieve the
long-desired goal of developing a nonsedating anxiolytic
[36]. And indeed, there has been substantial progress in
identifying such compounds [19-22,31,37-40], yet ironi-
cally, they do not in general conform to the expected par-
adigm of favoring α2-containing over α1-containing
receptors. This suggests that anxiolysis in humans may
prove to be more complex than is suggested by a simple
reading of the results from transgenic mice in behavioral
models thought to be indicative of anxiety. It remains to
be determined whether differences in the design of the
behavioral assays [41,42], interspecies differences [43,44],
or a combination of these factors account for these dis-
crepancies. Translating such promising results into clini-
cally useful compounds is likely to require an improved
understanding of the ways in which BZD-like ligands act
at different GABAA-R subtypes and the consequences of
these effects upon neural system-mediated behavioral
outputs.
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Conclusion
1. DOV315090 is a major metabolite of the anxioselective
GABAA-R modulator ocinaplon.

2. DOV 315,090 possesses modulatory activity at α1-, α2-
, α3-, and α5-containing GABAA-Rs with a selectivity pro-
file similar to that of ocinaplon.

3. The anxioselective properties of ocinaplon, demon-
strated in both preclinical and clinical studies, are not a
consequence of enhanced subtype selectivity by
DOV315090.

Abbreviations
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