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Abstract

Background: Anthrax is a human disease that results from infection by the bacteria, Bacillus
anthracis and has recently been used as a bioterrorist agent. Historically, this disease was associated
with Bacillus spore exposure from wool or animal carcasses. While current vaccine approaches
(targeted against the protective antigen) are effective for prophylaxis, multiple doses must be
injected. Common antibiotics that block the germination process are effective but must be
administered early in the infection cycle. In addition, new therapeutics are needed to specifically
target the proteolytic activity of lethal factor (LF) associated with this bacterial infection.

Results: Using a fluorescence-based assay to identify and characterize inhibitors of anthrax lethal
factor protease activity, we identified several chemically-distinct classes of inhibitory molecules
including polyamines, aminoglycosides and cationic peptides. In these studies, spermine was
demonstrated for the first time to inhibit anthrax LF with a K; value of 0.9 + 0.09 pM (mean * SEM;
n = 3). Additional linear polyamines were also active as LF inhibitors with lower potencies.

Conclusion: Based upon the studies reported herein, we chose linear polyamines related to
spermine as potential lead optimization candidates and additional testing in cell-based models
where cell penetration could be studied. During our screening process, we reproducibly
demonstrated that the potencies of certain compounds, including neomycin but not neamine or
spermine, were different depending upon the presence or absence of nucleic acids. Differential
sensitivity to the presence/absence of nucleic acids may be an additional point to consider when
comparing various classes of active compounds for lead optimization.

Background

Anthrax is a disease of animals including humans and
results from infection by Bacillus (B.) anthracis [1-3].
Anthrax spores reside in soil samples worldwide and are
resistant to environmental insults such as temperature,
moisture and UV irradiation. Spores enter host animals
via inhalation, epidermal or gastrointestinal routes with
respiratory route being the most fatal. Once inside hosts,

the spores germinate and secrete three toxin components,
called lethal factor (LF), edema factor (EF) and protective
antigen (PA), encoded by the pXO1 plasmid. LF, a metal-
loprotease, plus PA is termed lethal toxin and EF plus PA
is termed edema toxin [3]. The combination of bactere-
mia and release of the protein toxins leads to sepsis, pul-
monary edema and other fatal effects [1-5].
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PA is responsible for translocating the two other gene
products, LF and EF, into the cytosol of susceptible cells
[6-9]. The precursor form of PA (PA83) binds to ubiqui-
tous cell surface receptors including von Willebrand fac-
tor, tumor endothelial marker 8 (TEM8) and capillary
morphogenesis protein 2 [10,11]. PA83 is cleaved by furin
as well as by serum proteases [12-14]. The active form of
PA (PA63) then heptamerizes and binds with a high affin-
ity to LF or EF [3]. The complex of PA with LF or EF forms
a channel to allow LF/EF to translocate from the endo-
some to the cytosol where the toxic effects associated with
LF are manifest [3]. Cationic peptides that inhibit furin-
mediated activation of PA83 to PAG3 are also effective in
blocking lethal toxin cytotoxicity [13,16,17].

EF is a calmodulin-dependent adenylate cyclase and thus
elevates intracellular cAMP levels of intoxicated cells [18].
As a result of this mechanism, EF causes the additional
pathological effects in the host although it is less virulent
than LF. Recent studies have demonstrated that adefovir
diphosphate is a potent inhibitor of anthrax EF, in vitro
[19].

Anthrax LF is a representative member of the zinc-depend-
ent endopeptidases family as demonstrated by the pres-
ence of the HEXXH zinc-binding consensus sequence
[3,15]. LF, an 89 kD protein, is one of the main virulence
factors of anthrax [3,15]. LF contains numerous anionic
sites both within the active site and at distant sites [20-22].

Macrophages are target cells of LF toxicity in animal
model systems. Exposure of murine macrophages to
lethal toxin resulted in rapid loss of cell viability
[3,23,24]. Conversely, mice depleted of macrophages
were not sensitive to lethal toxin [1-3]. The mechanism of
lethality has been attributed to release of cytokines or
apoptosis as well as other mechanisms but is highly
dependent upon the LF concentration [1-3,5,26-29].

The mitogen activated protein kinase/extracellular signal-
regulated protein kinase (MAPK/ERK) pathway is a major
regulator for communication of extracellular signals to the
nucleus and is involved in cellular adaptations to the envi-
ronment [30,31]. In the cytosol, LF cleaves members of
the mitogen activated protein kinase kinase (MAPKK)
family in the N-terminal region including MAPKK family
members 1-3 [31,32]. The reduced levels of MAPKKs then
prevent p38 kinase-mediated activation of immune mech-
anisms B. anthracis to evade host immunological mecha-
nisms. Recently published studies have demonstrated that
small molecules can inhibit LF activity and subsequently
block LF-mediated cytotoxicity [21,29,33-36].

At present, the only mechanism to fatally "intoxicate"
cells with lethal factor is via host infection with B. anthra-
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cis spores that germinate in lymphatic tissues and secrete
their toxin components. None of the three individual
gene products of pXO1 are toxic in vivo [37]. Inhibitors of
other proteases such as angiotensin converting enzyme
and HIV-1/HIV-2 proteases are effective and highly spe-
cific drugs for the treatment of chronic diseases [38] and
therefore suggest a logical strategy for identifying anthrax
lethal factor inhibitors. Based upon the demonstration of
the anionic rich regions of LF [21,22,29], we chose chem-
ical libraries that included cationic compounds to test for
LF inhibition. These studies were directed at identification
of compounds that selectively inhibited LF both at the
enzyme level then evaluation of their effects in cell culture
based assays. An ideal therapeutic would penetrate sus-
ceptible cells and be effective protease inhibitors in "post-
exposure" models of treatment.

Results

Substrate kinetics

Using MAPKKide™ as substrate, velocity vs. substrate
curves were analyzed by DYNAFIT, a nonlinear fitting pro-
gram [39]. The results of the forward progress curves dem-
onstrated a clear substrate inhibition process as previously
shown with a different substrate [20]. The K, and K; val-
ues for MAPKKide™ were calculated to be 8.6 + 1.5 uM
and 85 + 17 uM, respectively. These data suggest that mul-
tiple inhibitory mechanisms may be available as sites for
binding of LF inhibitors (Kuzmic et al., submitted).

Endogenous polyamines inhibit Lethal Factor enzyme
activity

Based upon the presence of anionic sites on LF, we
hypothesized that cationic compounds, including mem-
bers of known drug-like chemical families, might inhibit
LF enzyme activity. An initial focused library of commer-
cially available cationic compounds (n~100 compounds)
from numerous chemical classes was assembled and
tested at a concentration of approximately 10 pg/ml in the
LF enzyme inhibition assay. One of these compound-
sspermine, was found to inhibit anthrax protease activity
in a concentration-dependent manner with a K; value of
0.9 + 0.09 uM (mean + SEM; Figure 1; Figure 2; Table 1).
In contrast to the potent inhibition of anthrax LF protease
enzyme activity, this compound was >40-fold weaker as a
botulinum protease inhibitor (K; value = 46 + 6 uM) and
much less active on mammalian proteases including
trypsin, cathepsin B and cathepsin D (IC;, values > 500
puM). Several other endogenous polyamines, including
spermidine, and ornithine, were evaluated for activity as
LF inhibitors; these endogenous compounds were weaker
than spermine but were still concentration-dependent
inhibitors (Table 1).
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Figure 2

Spermine inhibits anthrax lethal factor protease in a concen-
tration-dependent manner. These results (mean £ SEM) are
averaged from 3 separate experiments.

Aminoglycosides inhibit LF enzyme activity

Aminoglycoside antibiotics bind to the polyamine class of
glutamate receptors by a mechanism unrelated to antibi-
otic activity [40-42]. We therefore evaluated a series of
commercially-available aminoglycosides (n = 31) to
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determine their potencies as LF inhibitors. The results
demonstrated that some members of this chemical class
were potent inhibitors of anthrax LF cleavage of the sub-
strate (Table 1). Both natural aminoglycosides and syn-
thetic aminoglycosides (Table 1) were active. Of these,
neomycin was the most potent aminoglycoside with a K;
value of 0.3 + 0.1 uM. Based upon chemical size, we chose
to focus on neamine and related compounds (n = 20
neamine derivatives).

Exogenous nucleic acids alter LF inhibition by neomycin
Since aminoglycosides are known to bind to nucleic acids
[43-45] we evaluated key compounds in the absence of
DNA (standard assay) and in the presence of a variety of
nucleic acids. At concentrations <10 pg/ml, nucleic acids
did not affect LF enzyme activity. As shown in Fig 3, the
potency of neomycin was greater in the absence of DNA
compared to in the presence of salmon testes DNA (4 and
8 pg/ml). The higher concentration of DNA caused a ~10-
fold right shift in potency of neomycin. In contrast, the
concentration-dependent inhibitory activities of neamine
or spermine were unaffected by DNA or RNA (specifically
human placental DNA, type III RNA, polyA-polyU; results
not shown).

Table I: Endogenous polyamine and aminoglycoside-mediated inhibition of anthrax lethal factor activity-comparison with other

proteases-(Mean * SEM Kiapp or IC;, values)

LF Bot

Name KPP M 1C5o uM
i

Neomycin B tris-sulfate 0.71 £ 0.04 92.5
Sisomicin Sulfate 1.8 >300
Spermine, diphosphate salt 0.9 £ 0.09 57
Amikacin 233 >300
Neamine (free base) 31.1 £5.6 175
Spermidine >100 76
Apramycin 11 >300
Putrescine (1,4- >300 >300
diaminobutane)
Ac-CRATKML-N >300 35
GM 6001 72+ 176 >300
H-RRRRRR-OH 0.24 N/T*
Ac-RRRRRR-OH 0.29 + 0.04 N/T
Ac-RRRRRR-NH2 0.12 N/T
H-(D-Arg)-(D-Arg)-(D- 0.04 + 0.02 N/T
Arg)-(D-Arg)-(D-Arg)-(D-
Arg)-NH2
H-R(NO2)R(NO2) >300 N/T
Neomycin B hexaguanyl 0.03 14
hexatrifluoroacetate salt
Tetraguanyl neamine, free 0.3 N/T
base

MMP-9 Furin
>300 N/T
>300 N/T
>300 N/T
>300 N/T
>300 N/T
N/T N/T
>300 N/T
>300 N/T
N/T N/T
0.002 + 0.001 N/T
N/T 0.06
N/T 0.05
N/T N/T
N/T 0.06
N/T N/T
>170 1.5

N/T N/T

*N/T = not tested
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Figure 3

Influence of nucleic acids on concentration-dependent LF
inhibition. Anthrax lethal factor activity was measured in the
absence of DNA (M) as well as in the presence of salmon
sperm DNA at 4 ug/ml (A) and 8 ug/ml (¥), performed in
triplicate.

Cationic peptides inhibit furin enzyme activity
Cross-inhibition of LF and furin has been demonstrated
for polyarginine based inhibitors [46]. We therefore
examined the ability of our panel of LF inhibitors to
inhibit furin in an in vitro substrate cleavage assay. As
expected, several polyarginine derivatives inhibited furin
activity (Table 1). None of the remaining compounds
interfered with furin activity at concentrations up to 100
UM.

Discussion

In the initial phase of this study, we sought to identify
compounds that selectively inhibited anthrax lethal factor
enzyme activity. Such compounds were hypothesized to
be potential lead molecules for optimization as drugs to
treat B. anthracis infection. Since inhibitors of this pro-
tease were not known at the time, we chose to screen
structurally diverse collections of individual compounds
(a "library" consisting of ~500 compounds in several
chemical classes) as one approach towards lead identifica-
tion. We included simple linear cationic polyamines (n =
17) in the screening library with the hypothesis that they
might bind to anionic sites on LF and thus block substrate
cleavage. The data presented in this study show that sper-
mine (a simple linear polyamine) is a concentration-
dependent, sub-micromolar inhibitor of LF with reduced
inhibitory potencies (termed selectivity) versus other bac-
terial and mammalian proteases. Polyamine analogs of
spermine, including spermidine and ornithine were less
active than spermine but still displayed concentration-
dependent inhibitory effects as LF inhibitors.
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Based upon literature demonstrating that both
polyamines and aminoglycoside antibiotics bind to the
N-methyl-D-aspartate receptor [47,48], we also evaluated
aminoglycoside antibiotics for LF inhibition. In our inde-
pendent studies reported here and identified by other lab-
oratories [49-51] we found that gentamicin inhibited LF
enzyme activity without inhibiting other proteases from
bacterial and mammalian sources. We then showed that
other compounds were more potent LF inhibitors than
gentamicin. To further validate the mechanism, we tested
cationic peptides (n~5) such as D- and L-hexaarginine as
well as non-peptidyl cationic polymers including poly-L-
arginine and poly-L-lysine (molecular weight ranges =
5,000-15,000); the larger cationic polymers (both pepti-
dyl and non-peptidyl) were more potent inhibitors. While
these large molecules will not be drug leads, they vali-
dated the mechanistic hypotheses of LF inhibition. Based
upon these data, we concluded that neamine possessed
the most relevant combination of drug-like properties and
it was used as a scaffold for designing more potent and cell
permeable analogs [52].

Aminoglycosides are effective antibiotics for the treatment
of Gram-positive and Gram-negative infections as well as
certain mycobacterial infections [53,54]. Their use, how-
ever, is limited by lack of oral absorption and toxicity at
high doses including both ototoxicity and nephrotoxicity
[55]. Because of such toxicities, intravenous use of
aminoglycosides in large and diverse age/health popula-
tions would pose a significant risk if used as prophylactic
agents. Orally active/non-toxic compounds are still
needed for protection against bioterrorist threats based on
B. anthracis and its toxins.

High affinity polyamine interactions with nucleic acids
are well known in both cell-free and cellular systems [56-
60]. In anticancer studies, for example, exogenous
polyamines are cytotoxic by depleting endogenous
polyamine levels through feedback inhibition mecha-
nisms [59]. The cellular uptake of linear polyamines is
well-recognized and numerous transporters have been
shown to modulate polyamine levels within cells and
organelles [60 and references therein].

We also sought to determine if the presence of DNA or
RNA in the MAPKK cleavage assays would affect
polyamine inhibition of LF activity. First, we demon-
strated that nucleic acids did not inhibit LF activity at con-
centrations below those known to be present in human
blood (< 80 pg/ml; Promega tech bulletin). Subsequently,
we have also demonstrated that the presence of these
nucleic acids prevent certain compounds such as neomy-
cin but not neamine from inhibiting LF activity. One
hypothesis we have considered is the role of size of the
inhibitory molecules; smaller compounds such as sper-
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mine and neamine did not bind nucleic acids whereas
larger molecules that inhibited LF (neomycin) were ren-
dered less potent in the presence of 4-8 pg/ml of DNA or
RNA. This is a unique pharmacological discovery first
demonstrated in this effort.

All three chemical classes (linear polyamines, aminogly-
cosides and peptides) are highly charged molecules; they
were not expected to be active in cell models of anthrax
lethal factor cytotoxicity. This result was confirmed in our
initial LF cytotoxicity studies with RAW 264.7 macro-
phage cells as all compounds were not active up to the
highest concentration tested (500 puM). Recent studies
[50], however, have demonstrated that aminoglycosides
at "seemingly physiological conditions" inhibit LF and
exhibit antibiotic activity against B. anthracis. In addition,
linear polyamines enter cells by multiple mechanisms
including active transport [48,59,60]. These different
results highlight the need for continued research in this
area including longer compound exposure periods.

Inhibition of the proprotein convertase, furin, by cationic
peptides was expected since cationic hexapeptides and
nonapeptides have been demonstrated to inhibit furin
activity [12,13,46]. In contrast, however, the charged,
nonpeptidyl compounds were inactive as furin inhibitors
at concentrations up to 10 pM. It is likely that other small
molecule cations will inhibit furin processing. Such com-
pounds may be effective in a broad spectrum of diseases
where furin cleavage of proteins play a role, such as Alzhe-
imer's disease, viral infections and bacterial infections
[13].

Conclusion

Taken together, the enzymologic and pharmacologic
results presented in this study demonstrate the role of ani-
onic sites on anthrax lethal factor that specifically bind
cationic compounds from different chemical classes. Ulti-
mately multi-drug and multi-dose combinations of anti-
biotics that suppress production of anthrax spores plus
edema factor and LF inhibitors that target intracellular
toxins will be employed to treat people exposed to
anthrax gene products. Recently, an antiviral agent called
adefovir was found to inhibit edema factor adenylate
cyclase activity [19]. Combinations of edema factor and
lethal factor inhibitors along with Gram-positive antibiot-
ics could be utilized to treat people exposed to anthrax or
its gene products. As a spin-off of these efforts, researchers
may want to determine if the presence/absence of nucleic
acids affects the potency of selected compounds.

Methods

Materials

Aminoglycosides, nucleic acids and endogenous
polyamines used in this study were purchased from Sigma
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(St. Louis MO), and Calbiochem (San Diego, CA). Syn-
thetic polyamines were purchased from Mixture Sciences
Inc. (LaJolla, CA). Tetrapeptides were synthesized by Syn-
pep, Inc. (Dublin, CA).

Lethal Factor protease assay

Lethal Factor (20 nM final concentration) and MAPKK
substrate (MAPKKide® 12.5 uM, final concentration) were
purchased from List Biological Laboratories, Campbell,
CA and used according to the fluorescence resonance
energy transfer (FRET) method. The assay final volume
was 50 pl (Fisher #3694 96-well half area plates) consist-
ing of 5 pl inhibitor/test sample/buffer, 25 ul buffer (20
mM Hepes, pH 7.4), 10 ul enzyme and 10 pl substrate.
Test sample, buffer and enzyme were incubated briefly at
room temperature. Upon addition of substrate, the reac-
tion was linear for 15 min at room temperature. Fluores-
cence intensity was determined in the kinetic mode (Ex:
320 nm, Em: 420 nm; 6-minute read time; Molecular
Devices Gemini fluorescence plate reader) and data was
captured by SoftMax Pro (Molecular Devices, Sunnyvale,
CA). Analysis of resulting kinetic data was carried out
using DYNAFIT and Batch Ki (Biokin, Ltd., Pullman, WA)
then plotted with Prism (Graphpad, San Diego, CA).

Other protease assays

Additional FRET-based substrate cleavage assays were
established to monitor specificity of LF inhibitors. The
botulinum neurotoxin/A (BoNT/A) assay was carried out
in a similar manner as the lethal factor assay (above)
except the buffer was composed of 30 mM Hepes, pH 7.3,
5 mM dithiothreitol, 0.25 mM ZnCl,, and 1 mg/mL
bovine serum albumin (BSA). The substrate for the BONT/
A was SNAPtide® (12.5 uM, final concentration) pur-
chased from List Biological Laboratories (Campbell, CA).
BoNT/A enzyme was obtained from the University of Wis-
consin.

Furin inhibition was quantified [12] by measuring the
hydrolysis of the fluorogenic furin substrate Pyr-RTKR-
CMK (Peptide Institute, Osaka, Japan). Assays were per-
formed in 96-well plates using 100 uM substrate, and a
serial dilution of inhibitors. The initial velocity (V,) of the
200 pl reactions was quantified using a Spectramax
Gemini XS microplate reader. The ICy, of each inhibitor
was calculated by plotting V,, versus log [I] and performing
nonlinear regression. K,,,) was calculated from the ICs,
values using the equation K; = ICs,/1+([S]/K,.

Cell-based cytotoxicity assay

RAW 264.7 murine macrophage cells (ATCC, Manassas,
VA) were grown in the presence of Dulbecco's modified
Eagles medium containing 10% FBS to 70% confluency
(approximately 50,000 cells/well for 24 hours) in stand-
ard Corning 96-well cell-culture grade polystyrene plates
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(Corning, NY). Test compounds at various concentrations
(concentration-response) and appropriate vehicles were
added to the medium and preincubation was continued
for 60 min. At the end of this period, PA (250 ng/ml) and
LF (250 ng/ml) were added sequentially to each well.
After 2 hours, 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenytetrazolium bromide (MTT; 0.5 mg/ml final) was
added and the incubation was continued for an addi-
tional 2 hours. The supernatant fluid was removed from
each well and the remaining pigment was dissolved in
100 pl of 0.5% (w/v) sodium dodecyl sulfate, 40 mM HCI
in 90% (v/v) 2-propanol. Absorbance was read at 570 nm
and % viability was determined as a function of control
wells.
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