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Abstract
Background: Before therapeutic effect is obtained after treatment with antidepressant drugs, like
serotonin selective reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs) and monoamine
oxidase inhibitors (MAO-Is) there is an initial lag-period of a few weeks. Neuronal adaptations on
a molecular level are supposed to be involved in the initiation of the antidepressant effect.
Transcription factor AP-2 is essential for neuronal development and many genes involved in the
brainstem monoaminergic systems have binding sites for AP-2 in their regulatory regions. The
genotype of the AP-2β isoform has been associated with e.g. anxiety-related personality traits and
with platelet MAO activity. In addition, previous studies have shown that the levels of AP-2α and
AP-2β in rat whole brain were decreased after 10 days of treatment with citalopram (SSRI) and
imipramine (TCA), and were increased with phenelzine (MAO-I).

Results: In the present study, we report that treatment with citalopram for 1, 7 or 21 days did
not have effect on the AP-2 levels in rat brainstem. However, after treatment with phenelzine for
1, 7 or 21 days the levels of AP-2α and AP-2β had increased after 7 days, but had returned to
control levels at day 21.

Conclusion: The decrease in AP-2 levels in rat whole brain previously seen after treatment with
citalopram does not seem to be localised to the brainstem, it may rather occur in the
monoaminergic terminal projection areas. The present data suggest that the increase in AP-2 levels
previously seen in rat whole brain after subchronic treatment with phenelzine is located in the
brainstem. It cannot, however, be excluded that other brain regions are involved.

Background
There is a large number of pharmacological strategies for
treating serotonin-related disorders like depression and
anxiety. Well-known antidepressant drug effects are
blockade of the serotonin (5-HT) and/or norepinephrine
(NE) reuptake pumps, direct effects on the 5-HT- and/or
NE receptors and inhibition of the monoamine oxidase A
(MAO-A) enzyme. Irrespective of which drug or combina-

tion of drugs that is used, there is a delay of a few weeks
before any therapeutic effect is noticed. This initial lag-
period usually is associated with several side-effects, many
of which fade away with the appearance of the therapeutic
effect. Considering the lag-period needed for the antide-
pressant effect to emerge, it has been suggested that the
antidepressant mechanisms involve secondary molecular
neuronal adaptations, rather than being a result of the
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primary actions of the drugs [1,2]. Some attempts to elu-
cidate the molecular mechanisms involved in such lag-
period have been reported, for example both SSRIs and
MAO-Is cause desensitization of somatodendritic 5-HT1A
autoreceptors [3,4]. Furthermore, SSRIs have also, during
the initial lag period, been shown to cause desensitization
of terminal 5-HT1B/1D autoreceptors [5,6]. Gaining more
knowledge about molecular mechanisms involved in the
initial lag-period may prove important for the discovery
of new antidepressant drug targets and also for the knowl-
edge of the mechanisms of action of antidepressants.
Transcription factors, with their specific ability to regulate
gene expression, have been suggested as prominent novel
drug targets [7-11]. Transcription factor AP-2 is a critical
regulatory factor for neuronal gene expression and neuro-
nal development, e.g., in the brainstem [12-14]. Five dif-
ferent AP-2 genes have been identified, i.e., AP-2α, AP-2β,
AP-2γ, AP-2δ and AP-2ε [15-19]. The isoforms are
expressed from different genes and have a molecular
weight of around 50 kD. The cis-acting DNA sequences 5'-
(G/C)CCCA(G/C)(G/C)(G/C)-3' and the palindromic
sequence 5'-GCCNNNGGC-3' are considered as consen-
sus AP-2 binding sites for all AP-2 proteins [20]. Several
genes encoding proteins involved in the brainstem
monoaminergic systems have multiple AP-2 binding sites
in their regulatory regions [20-26] indicating an involve-
ment of AP-2 in the expression of these genes. We have
recently reported positive correlations between brainstem
AP-2α and AP-2β levels and monoaminergic activity in rat
frontal cortex [27], indicating a regulatory function of AP-
2α and AP-2β not only for neuronal development, but
also for neuronal adaptive mechanisms in the adult brain.
In two independent studies it was shown that the AP-2β

genotype is associated with anxiety-related personality
traits [28,29]. The AP-2β genotype has also been linked to
binge-eating disorder [30] and to platelet MAO activity
[31], which the latter is associated with personality traits.
Furthermore, the AP-2β genotype has been associated to
CSF-levels of homovanillic acid (HVA) in women [32].

In a previous study, we reported that the levels of AP-2α
and AP-2β were decreased in rat whole brain after treat-
ment for 10 days with citalopram, imipramine and lith-
ium, respectively [33]. We have also reported that
citalopram changes the levels of AP-2α and AP-2β in rat
whole brain in a time-dependent manner, i.e., AP-2 levels
were decreased after 7 days of treatment but returned to
control levels after 21 days of treatment [34]. Further-
more, AP-2α and AP-2β levels were shown to be increased
in rat whole brain after 10 days of treatment with
phenelzine [35]. In the present study, we report that nei-
ther treatment with citalopram for 1, 7 nor 21 days affect
the AP-2α and AP-2β levels in the rat brainstem. Treat-
ment with phenelzine, however, increased the levels of
both AP-2α and AP-2β in the rat brainstem after 7 days of
treatment, but after 21 days of treatment the levels had
returned to control levels.

Results
The mean relative amounts of AP-2α and AP-2β protein ±
standard deviation (SD) for each of the citalopram-,
phenelzine- and saline treated animal groups are shown
in tables 1 and 2, respectively. No significant differences
in the amounts of AP-2α and AP-2β were found between
any of the citalopram and saline treated groups. With
regard to phenelzine treatment, there was a significant

Table 1: Relative amount of AP-2α protein ± SD, for the different animal treatment groups.

day 1 day 7 day 21

saline 2.29 ± 0.43 2.16 ± 0.14 2.45 ± 0.33
phenelzine 2.28 ± 0.61 2.74 ± 0.57 * 2.54 ± 0.43
citalopram 2.35 ± 0.31 2.33 ± 0.49 2.49 ± 0.47

Values are means ± SD, for each group of animals, n = 6. *p < 0.05 as compared to animals treated with saline for the same time-period.

Table 2: Relative amount of AP-2β protein ± SD, for the different animal treatment groups.

day 1 day 7 day 21

saline 2.00 ± 0.44 1.86 ± 0.22 2.10 ± 0.14
phenelzine 2.14 ± 0.61 2.25 ± 0.25 * 2.00 ± 0.28
citalopram 2.16 ± 0.34 2.07 ± 0.47 2.05 ± 0.28

Values are means ± SD, for each group of animals, n = 6. *p < 0.05 as compared to animals treated with saline for the same time-period.
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increase in AP-2α levels after 7 days of treatment (2.74 ±
0.57 vs 2.16 ± 0.14: mean relative amount of AP-2α ± SD,
phenelzine vs saline, p = 0.037), which returned to con-
trol levels after 21 days. A similar result was obtained with
regard to AP-2β levels with a significant increase only after
7 days of treatment (2.25 ± 0.25 vs 1.86 ± 0.22: mean rel-
ative amount of AP-2β ± SD, phenelzine vs saline, p =
0.017).

When comparing the untreated naive animals with the
treated animal groups no differences with regard to the
levels of AP-2α (untreated animals: 2.49 ± 0.71, mean rel-
ative amount AP-2α ± SD) or AP-2β (untreated animals:
2.04 ± 0.64, mean relative amount AP-2β ± SD) were
found. Moreover, no differences in the levels of AP-2α
and AP-2β were observed between the groups of animals
treated with saline for the different time periods.

Discussion
In two independent studies, we have shown that the levels
of AP-2α and AP-2β in rat whole brain were decreased
after subchronic (7 or 10 days) treatment with citalopram
[33,34]. We have also shown that the AP-2α and AP-2β
levels in rat whole brain were increased after treatment
with phenelzine for 10 days [35]. For several reasons, we
hypothesized that the brainstem should be of particular
importance in this regard. Thus, many genes encoding
proteins involved in the brainstem monoaminergic sys-
tems have binding sites for AP-2 in their regulatory
regions. Furthermore, we have previously observed corre-
lations between brainstem AP-2 levels and cortical
monoamine activity [27]. The lag-period initially seen
before the antidepressant therapeutic effect is obtained
also made it interesting to study possible changes in AP-2
levels over time. In the present study, we found that treat-
ment with citalopram for 1, 7 or 21 days did not have any
effect on the brainstem levels of AP-2α and AP-2β. Treat-
ment with phenelzine for 7 days, on the other hand,
increased the brainstem levels of AP-2α and AP-2β, but
after 21 days of treatment the levels had returned to con-
trol levels. The phenelzine data presented here, are in line
with our previous study showing an increase in AP-2α and
AP-2β levels in rat whole brain after 10 days of treatment
with phenelzine [35].

The different responses on AP-2 of citalopram and
phenelzine are likely to be explained by the different
molecular mechanisms of the two drugs. Considerering
the specific drug targets for citalopram and phenelzine,
respectively, the target for citalopram, 5-HTT, is specific
for membranes of the serotonergic system, while the tar-
get for phenelzine, MAO-A, is not located in the seronon-
ergic neurons [36]. It has been shown that some SSRIs, to
some extent, are also able to inhibit MAO-activity [37].
However, all SSRIs, including citalopram, tested had a

much higher selectivity for MAO-B than MAO-A and
MAO-A, and not MAO-B, is the enzyme considered to be
involved in the antidepressant effect [38]. Thus, a MAO-
inhibiting effect of citalopram should not be a confound-
ing factor with regard to interpretation of the present
results. The fact that citalopram treatment did not affect
AP-2 levels in rat brainstem indicates that the decrease in
AP-2 levels previously seen in rat whole brain after citalo-
pram treatment, takes place in some other brain region. It
has been shown that postsynaptic 5-HT1A receptors in hip-
pocampus get an enhanced response to 5-HT after treat-
ment with TCA (that blocks both 5-HT and NE reuptake)
for a time-period that corresponds to the time required for
initiation of the antidepressant therapeutic effect [39]. An
increased 5-HT responsiveness has also been demon-
strated for other serotonin receptors than 5-HT1A and in
other projection areas than hippocampus [40]. Thus,
there are reasons to presume that the effect we have seen
on AP-2 levels after subchronic citalopram treatment
occurs in the 5-HT projection areas rather than in the 5-
HT cell bodies in the brainstem. With regard to the
increase in brainstem levels of AP-2 after 7 days of
phenelzine treatment, it is in line with previous reports
that MAO-Is partially enhance the 5-HT transmission by
increasing the amount of 5-HT released per action poten-
tial [38], an effect which is likely to be regulated by presy-
naptic mechanisms located in the brainstem. The
temporary changes in AP-2 levels after administration of
antidepressants (present data and [34]), coinciding in
time with the appearance of side-effects, makes it tempt-
ing to speculate that those two phenomena are somehow
interrelated.

In a previous study, we reported higher levels of AP-2α
and AP-2β in rat whole brain in untreated naive animals
compared to animals treated with citalopram or saline for
different time periods [34]. In the present study, however,
we did not see any differences in the brainstem levels of
AP-2α and AP-2β between naive untreated animals and
treated animal groups. This indicates that the changes in
AP-2α and AP-2β levels in rat whole brain previously seen
in animals treated with citalopram or saline compared to
naive untreated animals are located in some other AP-2
containing brain region than the brainstem.

As mentioned earlier, we have previously shown that the
AP-2β genotype is associated with platelet MAO activity
[31]. Thus, it is seems likely that AP-2 is involved in the
regulation of the expression of the MAO enzyme. A possi-
ble explanation for the elevated AP-2α and AP-2β levels
during subchronic phenelzine treatment could be that
they are part of a feedback mechanism to counteract the
reduction in MAO activity.
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Conclusions
Unraveling of the molecular mechanisms involved in the
initial phase of antidepressant treatment is essential for
the development of new efficient antidepressant drugs
with less side-effects. We find transcription factors, such as
AP-2, with ability to regulate expression of specific genes
involved in the monoaminergic mechanisms, to be inter-
esting candidates as novel antidepressant drug targets.

Methods
Animals and treatment paradigms
Adult male Sprague-Dawley rats (10 weeks of age, B&K
Universal AB, Sollentuna, Sweden) were housed in groups
of three and maintained on a 12 hour light /dark cycle
with food and water freely available. Animals were
administered phenelzine (n = 18, 10 mg/kg, Sigma, Swe-
den), or citalopram (n = 18, 10 mg/kg, Lundbeck AB,
Helsingborg, Sweden) subcutaneously with daily injec-
tions. All drugs were dissolved in saline (NaCl, 9 mg/kg).
Saline treated animals (n = 18) received saline injections
in the same volume as that given the citalopram and
phenelzine treated animals. Each group of animals was
treated for 1, 7 or 21 days, respectively. All animals were
sacrificed by CO2 inhalation 24 hours after their last injec-
tion. A group of untreated naive animals (n = 6) was sac-
rificed after 21 days. After sacrifice the brainstem was
dissected and nuclear extracts were prepared for measure-
ment of AP-2 levels by Enzyme-Linked Immunosorbent
Assay(ELISA). This study was carried out with permission
from the local animal ethics committee in Uppsala,
Sweden.

Extraction of nuclear extracts
Rat brainstem was homogenized in 3 ml buffer A (10 mM
HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM
DTT, 0.5 mM PMSF, pH 7.9). The homogenate was incu-
bated on ice for 15 minutes. To this 125 µl Nonidet P40
was added, and the homogenate was centrifuged for 30
seconds at 14000 rpm in 4°C. The pellet was resuspended
in 500 µl buffer C 20 mM HEPES, 0.4 M NaCl, 1 mM
EDTA, 1 mM EGTA, 1 mM DTT, 1 mM PMSF, pH 7.9).
Thereafter the tubes were put on a shaker for 15 minutes
and centrifuged at 14000 rpm for 5 minutes (4°C). The
supernatant i.e. the nuclear protein were aliquoted and
stored at -80°C. The protein concentration for all nuclear
extracts were determined by the method by Lowry at al.
(1951) [41]. The concentration of nuclear extracts were ~8
µg/µl.

ELISA measurements
96-well microtiter plates were coated (50 µl/ well) with
nuclear extracts (10 µg/ml) diluted in 50 mM Carbonate-
Bicarbonate buffer pH 9.0. The plates were covered with
parafilm and incubated overnight at 4°C. Antigen solu-
tion was then removed and 200 µl blocking buffer (PBS,

1 % BSA) was added to each well and the plates were incu-
bated for two hours in room temperature. Following this
the blocking buffer was removed and the plates were
washed with PBS. Primary antibody (50 µl, goat polyclo-
nal AP-2α and AP-2β, 15 µg/ml respectively, SDS Bio-
sciences, Falkenberg, Sweden) diluted in blocking buffer
was then added and the plates incubated overnight at
4°C. After incubation the antibody was removed and the
plates were washed three times with Wash buffer I (PBS,
0.05 % Tween-20). Secondary antibody (Donkey anti-
goat IgG AP conjugated, SDS Biosciences, Falkenberg,
Sweden) diluted 1:350 in blocking buffer, was then added
(50 µl) to each well and the plates were incubated for two
hours in room temperature. After removal of the second-
ary antibody the plates were washed three times with
Wash buffer I, and once with Wash buffer II (10 mM
diethanolamine, 0.5 mM MgCl2, pH 9.5). Thereafter, 50
µl substrate (Phosphatase substrate, 5 mg tablets, Sigma,
Sweden, diluted in 5 ml Wash buffer II) was added to each
well. The reaction continued for 30 minutes and was ter-
minated by adding 50 µl of 0.1 M EDTA, pH 7.5. The
plates were analysed in an ELISA reader (Molecular
Devices, Thermo Max) at optical density (OD) 405/490.
The OD of the AP-2 isoforms for each rat was correlated to
a value in a standard curve, where known concentrations
of antibody were plotted against optical density. The value
form the standard curve was then divided with the con-
centration of total protein in the nuclear extracts. The
quota was used as a value of the relative amount of AP-2α
and AP-2β protein. Each rat were analysed twice for
accuracy.

Statistical analyses
The statistical comparisons between drug treated and
saline treated animals for each time-point were analysed
using unpaired t-test. When comparing the groups of
untreated animals with all treatment groups we used anal-
ysis of variance (ANOVA) and Fisher's Protected Least Sig-
nificant Difference (PLSD). To test if any of the groups of
saline treated animals differed in the amounts of AP-2α
and AP-2β protein ANOVA and PLSD test were used. All
calculations were performed using Stat View 5.0 software
(SAS Institute Inc., Cary, NC, USA). Results have been
considered statistically significant when p < 0.05.
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