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Abstract

Background: PPARy agonists ameliorate insulin resistance and dyslipidemia in type 2 diabetic
patients. Adiponectin possesses insulin sensitizing properties, and predicts insulin sensitivity of both
glucose and lipid metabolism. In diet-induced insulin resistant rats and ZDF rats, the current studies
determined the correlation between PPARYy agonist-upregulated fatty acid binding protein(FABP3)
mRNA in adipose tissue and PPARy agonist-elevated serum adiponectin, and the correlation
between PPARy agonist-elevated serum adiponectin and PPARYy agonist-mediated efficacy in insulin
sensitization and lipid lowering.

Results: Parallel groups of SD rats were fed a high fat/sucrose (HF) diet for 4 weeks. These rats
were orally treated for the later 2 weeks with vehicle, either PPARy agonist GI262570 (0.2—-100
mg/kg, Q.D.), or GW347845 (3 mg/kg, B.I.D). Rats on HF diet showed significant increases in
postprandial serum triglycerides, free fatty acids (FFA), insulin, and area under curve (AUC) of
serum insulin during an oral glucose tolerance test, but showed no change in serum glucose,
adiponectin, and glucose AUC. Treatment with GI262570 dose-dependently upregulated adipose
FABP3 mRNA, and increased serum adiponectin. There was a positive correlation between adipose
FABP3 mRNA and serum adiponectin (r = 0.7350, p < 0.01). GI262570 dose-dependently
decreased the diet-induced elevations in triglycerides, FFA, insulin, and insulin AUC. Treatment
with GW347845 had similar effects on serum adiponectin and the diet-induced elevations. There
were negative correlations for adiponectin versus triglycerides, FFA, insulin, and insulin AUC (For
GI262570, r = -0.7486, -0.4581, -0.4379, and -0.3258 respectively, all p < 0.05. For GW347845, r
=-0.6370, -0.6877, -0.5512, and -0.3812 respectively, all p < 0.05). In ZDF rats treated with PPARy
agonists pioglitazone (3—30 mg/kg, B.I.D.) or GW347845 (3 mg/kg, B.1.D.), there were also negative
correlations for serum adiponectin versus glucose, triglycerides, FFA (for pioglitazone, r = -0.7005,
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-0.8603, and -0.9288 respectively; for GW347845, r = -0.9721, -0.8483, and -0.9453 respectively,

all p <0.01).

Conclusions: This study demonstrated that (a) PPARy agonists improved insulin sensitivity and
ameliorated dyslipidemia in HF fed rats and ZDF rats, which were correlated with serum
adiponectin; (b) Serum adiponectin was positively correlated with adipose FABP3 mRNA in
GI262570-treated rats. These data suggest that serum adiponectin can serve as a biomarker for
both in vivo PPARy activation and PPARy agonist-induced efficacy on insulin resistance and

dyslipidemia in rats.

Background

Type 2 diabetes mellitus (T2D) and the metabolic syn-
drome are characterized by resistance to the action of
insulin in peripheral tissues, including skeletal muscle,
liver, and adipose. Activation of the peroxisome prolifera-
tor-activated receptor gamma (PPARy) improves insulin
sensitivity and lowers circulating levels of glucose, triglyc-
erides and free fatty acids without stimulating insulin
secretion in rodent models of T2D [1,2]. PPARy agonists
also alleviate peripheral insulin resistance in humans, and
have been effectively used in treatment of T2D patients [3-
5]. Fatty acid binding protein(FABP3), adipocyte lipid
binding protein(aP2) and lipoprotein lipase (LPL)are
response genes of PPARy and are indicators for in vivo
PPARy activation in adipose tissue [6-9].

Adiponectin, an adipose-specific plasma protein, pos-
sesses insulin sensitizing and anti-atherogenic properties
[10]. It has been well documented that plasma adiponec-
tin is lower in obese subjects than in lean subjects, lower
in diabetic patients than in non-diabetic patients [10-13],
and is negatively correlated with body weight, visceral fat
mass, and resting insulin level [11,12]. Hotta et al also
reported that adiponectin decreased in parallel with the
progression of T2D in rhesus monkeys, and there is a
strong correlation between plasma adiponectin and sys-
temic insulin sensitivity [14]. Studies by Maeda et al
showed that adiponectin knockout mice developed
hyperglycemia and hyperinsulinemia while on HF diet,
which was reversed by adenoviral-mediated adiponectin
expression [15]. Exogenous adiponectin also lowered
hepatic glucose production during a pancreatic euglyc-
emic clamp [16], and increased post-absorptive insulin-
mediated suppression of hepatic glucose output [10]. The
PPARy agonist, class of insulin sensitizer, has the marked
effect of up-regulating serum adiponectin. Combs et al
reported that the PPARy agonist rosiglitazone increased
plasma adiponectin in db/db mice [17]. Yang et al reported
rosiglitazone increased plasma levels of adiponectin in
type 2 diabetic patients [18]. Tschritter et al analyzed the
associations between plasma adiponectin and insulin sen-
sitivity and serum lipid parameters in nondiabetic indi-
viduals, and concluded that plasma adiponectin predicts

insulin sensitivity of both glucose and lipid metabolism
[19].

While PPARy agonists increase plasma adiponectin and
adiponectin levels predict insulin sensitivity, there is not a
clear demonstration of the relationships among PPARy
agonist-increased adiponectin and PPARy agonist-medi-
ated efficacy on insulin sensitivity/in vivo PPARy activa-
tion. Therefore, the current studies were designed to
define these relationships and assess serum adiponectin
as a biomarker for in vivo PPARy activation and PPARy
agonist-induced efficacy on insulin sensitization and lipid
lowering.

Results

High fatisucrose (HF) diet induced changes in SD rats
Rats on the HF diet for 4 weeks showed marked insulin
resistance and dyslipidemia, indicated by significant
increases in postprandial serum levels of triglycerides, free
fatty acids, insulin, and area under curve (AUC) for serum
insulin during OGTIT. But the HF diet did not cause
changes in postprandial serum glucose or OGTT glucose
AUC compared with rats on normal diet, consistent with
an insulin resistant, pre-diabetic phenotype. Serum adi-
ponectin level in rats on HF diet was slightly higher than
that in normal diet rats at week 2, but back to the same
level at week 4 (Table 1).

PPARy agonist on adiponectin in SD rats

As showed in Fig. 1, treatment of SD rats on HF diet with
GI262570 for 2 weeks dose-dependently increased serum
adiponectin, and upregulated adipose FABP3 mRNA
without effect on housekeeper genes 18S, B-actin, and
cyclophilin. There was a positive correlation between adi-
pose FABP3 mRNA and serum adiponectin (Pearson Cor-
relation Coefficients 0.7350, p < 0.01). A marked increase
in serum adiponectin was also observed in GW347845-
treated HF fed SD rats (30.93 + 0.45 vs 4.86 + 0.30 ug/ml
in vehicle. p < 0.01).
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Table I: HF diet induced changes in SD rats.
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Normal diet HF diet
Triglyceride (mg/dL)
Prior to start 95.0 + 8.7 115.6 £ 13.7
2 weeks diet 1004 + 7.6 446.2 £ 38.7%F++
4 weeks diet 121.7 £ 9.1 388.1 + 44.5%++
Free fatty acid (mEq/L)
Prior to start 0.36 + 0.05 0.41 + 0.04
2 weeks diet 0.38 + 0.05 0.56 + 0.04+*++
4 weeks diet 0.24 £+ 0.02 0.67 + 0.06%*++
Glucose (mg/dL)
Prior to start 166.8 £ 5.3 162.8 £ 4.3
2 weeks diet 1700 £ I1.3 174.1 £2.5
4 weeks diet 176.6 £ 2.8 167.0 £ 4.0
Post-prandial insulin (ng/ml)
Prior to start 0.71 £0.11 1.06 £ 0.15
2 weeks diet 1.26 £ 0.29 2.72 £ 0.47%++
4 weeks diet 1.23 £ 0.22 2.39 + 0.35%++
Insulin AUC during OGTT
4 weeks diet 241.6 £ 195 528.6 + 84.9**
Glucose AUC during OGTT
4 weeks diet 7360 £ 416 7533 £ 496
Serum adiponectin (pg/ml)
Prior to start 3.59+0.25 3.53+0.25
2 weeks diet 3.64 £ 032 4.96 + 0.41*
4 weeks diet 3.75 £ 0.40 4.35+0.40

*p < 0.05 vs Before diet, **p < 0.0l vs Before diet, ++p < 0.01 vs Normal diet.

PPARy agonist-increased serum adiponectin and PPARy
agonist-mediated efficacy on insulin sensitivity and lipid
lowering

Treatment of rats on HF diet with GI262570 for 2 weeks
significantly decreased the diet-induced elevations in
postprandial serum triglycerides, free fatty acids, insulin,
and insulin AUC in a dose-dependent manner (Fig. 2).
Treatment with GW347845 showed a qualitatively similar
effect to that of GI262570 treatment (Table 2). There were
negative correlations for adiponectin versus triglycerides,
free fatty acids, insulin, and insulin AUC (For GI262570,
r = -0.7486, -0.4581, -0.4379, and -0.3258; p < 0.005,
0.005, 0.01 and 0.05 respectively, Fig. 3; For GW347845,
r=-0.6370,-0.6877,-0.5512, and -0.3812, p< 0.01, 0.01,
0.01 and 0.05 respectively, Table 2).

PPARy agonists in Zucker rats

Compared with Zucker lean rats, ZDF rats had higher
serum insulin, glucose, TG, FFA, but similar serum adi-
ponectin levels. Treatment of ZDF rats with PPARy agonist
pioglitazone or GW347845 for 2 weeks resulted in signif-
icantly lower serum glucose, triglycerides, free fatty acids,
and modestly lower serum insulin, compared to vehicle
treatment. Both pioglitazone and GW347845 markedly

increased serum adiponectin in ZDF rats (Table 3). There
were also negative correlations for serum adiponectin ver-
sus glucose, TG, FFA (for pioglitazone, r = -0.7005, -
0.8603, and -0.9288 respectively; for GW347845, 1 = -
0.9721, -0.8483, and -0.9453 respectively, all p < 0.01).

Discussion

Adiponectin possesses insulin sensitizing and anti-athero-
genic properties [10]. In most clinical reports, primate
studies, and genetic models, serum adiponectin level had
been reported to be negatively correlated with body
weight, visceral fat mass, and resting insulin level [10-13].
The present study showed that rats fed a HF diet had sig-
nificantly higher serum insulin and lipids with in 2 weeks,
which indicates insulin resistance. However, serum adi-
ponectin level was not decreased by the diet up to 4 weeks.
We have subsequently kept rats on the HF diet for up to
20 weeks, and observed a slight increase (instead of
decrease) in serum adiponectin level (data not shown).
Our data may suggest that the HF diet-induced insulin
resistance happened much early than diet-induced change
in serum adiponectin. Our data is consistent with studies
by Naderali EK et al [19]. In their report, 16 weeks of high
fat/glucose diet resulted in significantly higher body
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Efeects of PPARy agonist GI262570 on serum adiponectin level (a), adipose FABP3 mRNA level (b), and the correlation
between serum adiponectin and adipose FABP3 mRNA. SD rats were on HF diet for 4 weeks. GI262570 was oral dosed for
the later 2 weeks. Mean + SEM. N = 5-8 in each group. *p < 0.05 vs vehicle. **p < 0.01 vs vehicle.

weight, fat pad masses, plasma leptin, and higher plasma
level of adiponectin, besides higher levels of plasma TG
and FFA.

PPARy is a member of the PPAR family of the nuclear
receptor superfamily [6]. PPARy agonists increase insulin
sensitivity and circulating adiponectin [1,2,17,18]. The
response genes of PPARy for in vivo PPARy activation
include LPL, AP2 and FABP3 [6,7,9]. The current study
demonstrated that as in other species the PPARy agonist
GI262570 upregulated serum adiponectin level and adi-
pose FABP3 mRNA level in SD rats in a dose-dependent
manner. Interestingly, there is a positive correlation
between PPARy full agonist-upregulated serum adiponec-
tin level and adipose FABP3 mRNA level, demonstrating

the serum adiponectin level could be a biomarker for in
vivo PPARy activation.

We did perform parallel experiments to check mRNA lev-
els of PPARy response genes FABP3, aP2 and LPL in epidi-
dymal fat. We found that basal level of FABP3 mRNA was
very low compared to aP2 and LPL (FABP3:LPL:aP2 =
~1:250:2500), and that PPARy agonist GI262570 dose-
dependently increased FABP3 mRNA. AP2 was abundant
in epididymal fat tissues, and was only slightly increased
by GI262570 in a non-dose-dependent manner (data not
shown). LPL was decreased in high fat diet fed rats, which
was reversed by GI262570 but not dose-dependently
(data not shown). With in vivo chronic exposure, the
effect of PPARy agonists on gene expression is difficult to
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Table 2: Effect of GW347845 (3 mg/kg, B.1.D.) in rats on HF diet.

Triglycerides (mg/dL) FFA (mEq/L) Serum Insulin (ng/ml) Insulin AUC (min x ng/ml)
Normal diet 98.6 + 8.6 0.26 £ 0.03 1.34£0.19 241.0+228
Diet-Vehicle 455.6 + 94.2%* 0.65 + 0.07** 1.88 + 0.16* 356.9 + 25.3%*
Diet-GW347845 139.4 £ 14.8++ 0.37 £ 0.03++ I.16 £ 0.08++ 267.9 + 342
Corr. Coeff. -0.637 -0.6877 -0.5512 -0.3812
Vs adiponectin p <0.0I p <0.0lI p <0.0I p <0.05

Corr. Coeff.: Pearson Correlation Coefficient. *p < 0.05 vs Normal diet. **p < 0.01 vs normal diet. **p < 0.01 vs diet-vehicle. N = 7-8 in each

group.

separate from the effects on differentiation. In general we
find aP2 a better marker of adipocyte differentiation than

PPARy activation. Since PPARy agonist-mediated action in
vivo may vary with organs/tissues (such as liver vs fat; sub-
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Table 3: Effect of pioglitazone and GW347845 in ZDF rats.

Insulin (ng/ml) Glucose (mg/dL) Triglycerides (mg/dL) FFA (mEq/L) Adiponectin (ug/ml)

ZDF lean rats
Vehicle 0.3 0.1 158 + 4 82+7 0.31 £ 0.02 10.2+£0.5
ZDF rats
Vehicle 2.9 + 0.5+ 525 + 25%* 912 £ 97** 0.62 + 0.03** 10.0 + 1.1
Pioglitazone (mg/kg, B.I.D)

3 25+ 06" 214 + 64F 25| + 81+ 0.26 + 0.09** 440 £ 7.7+

10 28+ 0.5 154 £ |7+ 129 + 19+ 0.16 £ 0.01* 60.0 £ .5+

30 2.3 +04* 154 £ 9+* 129 £+ 16+ 0.14 £ 0.01* 63.0 £ 0.8+*
GW347845 (mg/kg, B.1.D)

3 1.7 £ 0.2+ 147 £ 6+* 95 + 10+* 0.12 £ 0.01* 66.1 £ 0.6%*

*p < 0.01 vs ZDF lean rats. * p < 0.05 vs Vehicle-treated ZDF rats. **p < 0.01 vs Vehicle-treated ZDF rats. N = 6—12 in each group.
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cutaneous fat vs omental or epididymal fat) [20,21] and
duration of treatment, all PPARy response genes may not
be changed in the same manner in one tissue following
chronic treatment. Therefore the authors consider that the
dose-dependently GI262570 upregulated FABP3 mRNA
in epididymal fat caught in the present study is of value
for quantitative in vivo PPARy activation. Thus the corre-
lation data using FABP3 mRNA is of value.

Adiponectin has been demonstrated to have an insulin
sensitizing effect [ 10]. Circulating adiponectin levels were
positively correlated with insulin sensitivity, measured
both by an euglycemic-hyperinsulinemic clamp and esti-
mated by an oral glucose tolerant test, were negatively cor-
related with fasting lipids [22]. The PPARy agonist
rosiglitazone increased plasma level of adiponectin,
decreased fasting plasma glucose and HBA, ,, and amelio-
rated insulin resistance in type 2 diabetic patients [18].
However, the relationship between PPARy agonist-
increased circulating adiponectin and PPARy agonist-
induced efficacy on insulin resistance has not been stud-
ied. The current study showed that PPARy agonists
increased serum levels of adiponectin, ameliorated insu-
lin resistance and lipid profile in both diet-induced insu-
lin resistant rats and ZDF rats. There is a correlation
between PPARy agonist-increased serum adiponectin level
and PPARy agonist-induced efficacy in insulin sensitivity/
lipid lowering. These data provide a link between PPARy
agonist-elevated circulating adiponectin level and PPARy
agonist-mediated efficacy in insulin sensitivity and lipid
lowering, and indicate that serum adiponectin level could
be a biomarker for in vivo PPARy efficacy.

Other adipokines, such as leptin, are important in obesity
and insulin resistance. Unlike adiponectin, leptin is posi-
tively correlated with fat amount, mass and percentage
[23]. It has been reported that PPARy agonists inhibit the
expression and function of leptin [24,25]. Our unpub-
lished study showed that high fat diet resulted in insulin
resistance and higher serum leptin level in rats. Treatment
of these insulin resistant rats with PPARy agonist GW7845
improved insulin sensitivity, but did not affect serum lep-
tin level. Therefore leptin is not considered to be a marker
for PPARy efficacy. There are indices for in vivo PPARy
activation (i.g., adipose FABP3 mRNA), or for in vivo
PPARYy efficacy on insulin sensitization (i.g., serum insulin
and glucose). These indices can not be used to represent
both in vivo PPARy activation and in vivo PPARy efficacy
on insulin sensitization. It is well known that circulating
adiponectin increases insulin sensitivity [10], is decreased
in T2D patients [10-13], and is negatively correlated with
insulin resistance [22]; PPARy agonists increase insulin
sensitivity as well as circulating adiponectin [17,18]. The
correlations, serum adiponectin vs adipose FABP3 mRNA
and serum adiponectin vs insulin/lipids, in our study

http://www.biomedcentral.com/1471-2210/4/23

demonstrated that serum adiponectin is a good
biomarker for both in vivo PPARy activation and in vivo
PPARy efficacy on insulin sensitization.

Conclusions

These studies demonstrated that in both diet-induced and
genetic rat models of insulin resistant (metabolic) syn-
drome the full PPARy agonists GI262570, GW347845,
and pioglitazone significantly elevated serum adiponectin
levels, increased adipose transcription of the PPARy
response gene FABP3, and were efficacious as expected.
This is the first demonstration of correlation among
PPARy agonist-increased serum adiponectin, PPARy ago-
nist response gene mRNA, and PPARy agonist-mediated
efficacy in insulin sensitivity and lipid lowering. These
data indicate that serum adiponectin can serve as a
biomarker for both in vivo PPARy activation and PPARy
agonist-induced efficacy in rats.

Methods

Experimental animal and protocols

All procedures performed were in compliance with the
Animal Welfare Act and U.S. Department of Agriculture
regulations, and were approved by the GlaxoSmithKline
Animal Care and Use Committee. Male caesarian derived
Sprague Dawley rats (SD, 225-250 g) (Charles River, Indi-
anapolis, IN) were fed rodent chow Purina 5001 (Harlan
Teklad, Indianapolis, IN). Male Zucker diabetic fatty
(ZDF) and male Zucker lean rats (8 weeks old) (Genetic
Models, Indianapolis, IN) were fed Formulab Diet 5008
(PMI Feeds, Richmond, IN). After an adaptation period of
1 week, SD rats were fed a HF diet (TD88137, Containing
34.146% sucrose. 42% of calories from fat. Harlan Teklad,
Indianapolis, IN) for 4 weeks. SD Rats fed chow Purina
5001 served as normal diet control. SD rats on HF diet
were treated with vehicle (0.5% hydroxypropyl methylcel-
lulose and 0.1% Tween 80), PPARy agonist GI262570
[7,26-28] (0.2, 2, 20, or 100 mg/kg, QD), or PPARy ago-
nist GW347845 (3 mg/kg, BID) for the last 2 weeks. ZDF
rats were gavaged twice daily for 14 days with vehicle,
PPARy agonist pioglitazone [4] (3, 10, or 30 mg/kg), or
PPARy agonist GW347845 (3 mg/kg) [29,30]. Zucker lean
rats were gavaged twice daily for 14 days with vehicle. One
day prior to the end of dosing (after 13 days of dosing),
serum was obtained from tail vein of SD rats for determin-
ing postprandial levels of glucose, insulin, triglycerides,
free fatty acids, and adiponectin. The SD rats were then
implanted with a jugular cannula. Oral glucose tolerant
tests (OGTT) were performed in these SD rats after 14 days
of dosing. At the end of the study, SD rats were euthanized
with CO,. White adipose tissue (WAT, epididymal fat
pad) were saved for determining mRNA levels of PPARy
response gene FABP3. In Zucker rats, serum was collected
after 2 weeks of dosing for determining postprandial
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levels of glucose, insulin, triglycerides, free fatty acids, and
adiponectin. Zucker rats were then euthanized with CO,.

Determination of postprandial serum chemicals

Serum glucose, triglycerides, and free fatty acids were
measured using I1ab600 Clinical Chemistry System
(Instrumentation Laboratory).

Determination of serum adiponectin

Serum adiponectin of SD rats was determined by using
adiponectin RIA kit (Linco Research, MO), according to
the manufacture's instruction. Serum adiponectin of ZDF
rats was determined by using adiponectin ELISA kit (B-
Bridge International, CA), according to the manufacture's
instruction.

Jugular vein cannulation

Under anesthesia with isoflurane, surgical site was pre-
pared using standard aseptic technique (with Hiboclens®
Chlorhexidine Gluconate, Zeneca Pharmaceuticals, Dela-
ware). A longitudinal incision was made over the right
external jugular vein. 5-10 mm of the vein was exposed
by blunt dissection. Jugular cannula (Access™ Technolo-
gies, IL) was inserted into the vein for about 1 inch. The
cannula was secured using sterile sutures. The cannula was
routed subcutaneously, exteriorized between the scapu-
lae. The cannula was then filled with dextrose-heparin
solution (50:50), and heat sealed.

OGTT

Rats implanted with jugular cannula were fasted over-
night. The following morning, dextrose (0.5 g/ml in
water, 2 g/kg body weight) was administered by oral gav-
age. Blood samples (0.3 ml/time) were obtained from the
jugular cannula before gavage, 10, 20, 30, 45, 60, 90 and
120 min after gavage. Blood glucose was immediately
measured by using Elite® XL Glucometer (Bayer, Tarry-
town, NY). Serum was collected for insulin measurement.
Area under curves (AUCs) for glucose and insulin during
OGIT were calculated by using WinNonlin™ Noncom-
partmental Model 200.

Determination of insulin level

Serum insulin of SD rats level was determined using Rat
Insulin ELISA kit (Crystal Chem Inc, IL), according to the
manufacture's instruction. Serum insulin level of ZDF rats
was determined using Igen's M-SERIES M-8 Analyzer
(Igen International, Inc., Gaithersburg, MD).

Determination of FABP3 mRNA level in white adipose
tissue by real time PCR

Total RNA in epididymal fat pad was isolated by the TRI-
ZOL® method [31]. All RNA samples were DNased using
the DNA-free™ kit (Ambion - according to protocol). The
samples were then quantitated by RiboGreen™ (Molecular

http://www.biomedcentral.com/1471-2210/4/23

Probes - according to protocol). GAPDH gene expression
was analyzed in the absence of reverse transcriptase to
ensure the samples were free of genomic DNA. The sam-
ples were then converted to cDNA using the High Capac-
ity cDNA Archive Kit (Applied Biosystems - according to
protocol). Samples were diluted to a final concentration
of 5 ng/ul of cDNA. PCR results were generated using the
5' nuclease assay (TaqMan) [32] and the ABI 7900
Sequence Detection System (Applied Biosystems, Foster
City, CA). Primers and probe for FABP3 are: Forward-
GTCGTGACACTGGACGGAGG; Reverse-TTCCCATCACT-
TAGITCCCGTG; Probe-CAGAAGTGGGACGGGCAGGA-
GACTACG. The primers and probe for Cyclophilin are:
Forward-TATCTGCACTGCCAAGACTGA; Reverse-
CCACAATGCTCATGCCITCTTITCA; Probe-CCAAAGAC-
CACATGCITGCCATCCA. A master mixture was utilized
which included 900 nM each of the forward and reverse
primers, 100 nM probe, and 1 x PCR master mix (Applied
Biosystems). The PCR reaction consisted of 12.5 ng of
c¢DNA in a 12.5 ul total reaction volume. The PCR cycling
conditions were 95°C for 10 minutes, and 40 cycles of
95°C for 15 seconds and 60°C for 1 minute.

Statistical analysis

There was a minimum of 5 rats for each data point. Data
are presented as mean + SEM. Correlation between two
parameters and the significant level of correlation were
analyzed by Pearson correlation analysis. Differences
between vehicle and treated groups were analyzed by two-
way ANOVA. P less than 0.05 was taken to be significant.
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PCR: Polymerase Chain Reaction
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