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Contrasting effects of linaclotide and lubiprostone
on restitution of epithelial cell barrier properties
and cellular homeostasis after exposure to cell
stressors
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Abstract

Background: Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which
lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation.
Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of
active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment
with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects
of lubiprostone, known to promote repair of barrier function was carried out.

Results: In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes,
short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of
the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased
short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in
short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of
fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually
ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or
promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by
methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and
linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that
lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but
not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and
8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications
of these small but statistically significant changes remain unclear.

Conclusions: Considering the physiological importance of epithelial barrier function and cell integrity and the
known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct
property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential
clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.
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Background
Linaclotide is a new drug currently under review by the
FDA and EMA (European Medicines Agency) for treatment
of chronic idiopathic constipation (CIC) and irritable bowel
syndrome with constipation (IBS-C) [1-6]. It is a 14 amino
acid peptide that gets cleaved in vivo, to a 13 amino acid
peptide (CCEYCCNPACTGC) by carboxypeptidase action
to form MM-419447, the active metabolite [2]. Linaclotide
is a homologue of the heat-stable enterotoxin STa, which is
in a class of toxins significantly contributing to global
endemic diarrhea induced by pathogenic bacteria [5]. Like
STa, guanylin and uroguanylin, linaclotide activates guany-
late cyclase-C (GC-C) leading to increased [cGMP]i [7-9].
In rodent animal models, linaclotide stimulated intestinal
fluid secretion and transit time and reduced pain [8-10]. In
clinical trials [1-6,11], linaclotide was found to improve
bowel symptoms, transit time and abdominal discomfort or
pain in patients with IBS-C and CIC. These trials suggest
that linaclotide appears to be a safe and effective treatment.
However, long term exposure data outside of selected clin-
ical trial populations is not currently available.
Lubiprostone, an analogue of endogenous prostones

(functional fatty acids physiologically generated in the
human body) is FDA- approved and used for treatment of
CIC and IBS-C [12-16]. Lubiprostone activates ClC-2 Cl-

channels in the apical membrane of epithelial cells [17,18]
thereby increasing intestinal salt and water secretion, pro-
moting bowel movements [19,20] and significantly im-
proving symptoms associated with CIC and IBS-C [12-
16]. Lubiprostone also ameliorates abdominal discomfort
and pain [13,14] without influencing visceral pain thresh-
olds in patients with IBS-C [21]. In porcine intestine mod-
els lubiprostone exhibits an additional distinct property
wherein it promotes repair of barrier properties which are
disrupted by ischemia, an effect shown to be associated
with ClC-2 channel activation [22-24]. These findings in-
dicate that ClC-2 Cl- channels are important in mainten-
ance of the intestinal barrier. The mechanism involved is
complex and not fully understood. Repair is mediated in
part by restoration of occludin levels and appears to coin-
cide with the movement of occludin back into the apical
aspects of tight junctions where ClC-2 is also localized
[23]. Most recently it has been shown that ClC-2 modu-
lates tight junction barrier function through intracellular
trafficking of occludin [25]. It is additionally of interest that
recently it has been found that methadone inhibits lubi-
prostone-stimulated recombinant ClC-2 Cl− currents and
lubiprostone-stimulated Cl− secretion in T84 cells, but has
no effect on recombinant CFTR Cl− currents [26].
In contrast, nothing is known about linaclotide effects on

epithelial barrier repair after injury or stress. Maintenance
of epithelial barrier function and recovery from stressors is
important for maintaining normal physiological function of
the intestinal tract. Drugs that have reparative properties on
barrier function would be helpful in diseased states, where
altered intestinal permeability may occur as has been sug-
gested for IBS [27-29], but has seemingly not been investi-
gated in CIC. IBS is characterized by chronic abdominal
pain or discomfort with altered bowel function. The patho-
physiology of IBS is complex and includes many factors
such as visceral hypersensitivity, mucosal immune altera-
tions, psychosocial factors as well as possibly altered intes-
tinal permeability, which however remains controversial
[27-32]. In one recent study permeability measurements
were carried out in IBS patients and the authors concluded
that IBS symptoms were associated with a subtle intestinal
permeability increase [27]. Using colonic biopsies of IBS
patients (IBS-C, −D, −A) and a fluorescent marker, para-
cellular permeability was significantly increased in biopsies
from IBS patients compared to controls [29]. In addition in
this study, Caco-2 cells treated with supernatants from such
IBS-patient-derived colonic biopsies showed a significant
fall in transepithelial resistance (TER) and lower expression
of tight junction protein ZO-1 mRNA compared to healthy
individuals [29]. In contrast in another study [30], intestinal
permeability was found to be no different in IBS patients
compared to healthy controls. However in the same study,
NSAIDS compromised intestinal permeability in IBS
patients to a greater extent than in healthy subjects, sug-
gesting that IBS is likely associated with altered intestinal
barrier responses to noxious agents [30]. More recently,
two studies showed that expression and subcellular distri-
bution of the tight junction proteins, ZO-1, occludin and
claudin-1 were found to be altered in IBS-C and IBS-D [31]
and that paracellular permeability was significantly higher
in cecal biopsies from IBS patients compared to controls,
with similar increases in all IBS subtypes (−C, −D and −M)
[32]. Thus, measuring epithelial barrier properties and epi-
thelial barrier reactions to stressors may reveal additional
alterations present in diseased states and studying the
effects of compounds used to treat gastrointestinal disorders
on such processes may be of considerable clinical
importance.
T84 cells grown to confluence develop a high transepithe-

lial resistance (TER) of 1–2 kΩ/cm2 and have been used for
studies of epithelial barrier function including damage as
occurs with the pro-inflammatory cytokines, interferon-γ
(IFN-γ) and tumor necrosis factor-α (TNF-α). These cyto-
kines reduce TER in part through reduction of occludin
levels and increase passage of high molecular weight mole-
cules eg the endotoxin LPS which may be involved in path-
ology of celiac sprue enteropathy and inflammatory bowel
disease (ulcerative colitis and Crohn’s disease) [33-37].
Using the pig intestine and T84 epithelial cell models, the

aim of the present study was to investigate the effects of
active linaclotide on barrier function and cellular changes
induced by stressors such as ischemia in pig jejunum and
IFN-γ and TNF-α, proinflammatory cytokines in T84 cells.
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Effects of linaclotide were compared with lubiprostone as
control, which is known to repair the intestinal epithelial
barrier [22-24]. Our results demonstrate by various mea-
sures that after injury or stress, active linaclotide failed to
effectively repair or protect the epithelial barrier and cell
function, whereas lubiprostone repaired or protected the
barrier, cell function and homeostasis.

Methods
Materials
The active form of linaclotide, MM-419447, (CCEYCCN
PACTGC) was prepared by solid phase synthesis and
disulfide bridges at 1–6,2–10 and 5–13 were introduced
using a random/thermodynamic strategy (6TRT) by Gen-
Script Corporation (Piscataway, NJ) using the 6TRT proce-
dures described by others [38]. The linear peptide had a
molecular weight of 1369.58 Da, and as expected the oxi-
dized peptide had a molecular weight of 1363.58. The oxi-
dized peptide purity was 96.2%. The active form of
linaclotide was prepared in water. Mitochondrial dye JC-1.
DiBAC4(3), indo-1 AM, 3,000 Da FITC-dextran or
70,000 Da rhodamine-dextran, mouse anti-occludin and
rabbit anti-occludin were obtained from Invitrogen
(Eugene, OR). FCCP, fluorescent E. Coli lipopolysaccharide
(LPS), TNF-α, PGE1, 8-bromo cGMP (8BrcGMP), guanylin
and 3H-mannitol were from Sigma-Aldrich (St. Louis,
MO). IFN-γ was from Cell Signaling Technology (Danvers,
MA). Mouse anti-beta actin and rabbit anti-beta actin
were from Abcam (Cambridge, MA). Protease inhibitor
cocktail was from Roche Applied Science (Indianapolis,
IN). Cyclic GMP immunoassay kit was from Assay
Designs (Ann Arbor, MI). STa was kindly supplied by Dr.
Ralph Gianella (University of Cincinnati College of Medi-
cine). Lubiprostone (AMITIZA™) was obtained from
R-Tech Ueno (Sanda, Japan) as 2 mM solutions in DMSO.

Experimental animal surgeries
All studies were approved by the North Carolina State
University Institutional Animal Care and Use Committee.
Six to eight-week-old Yorkshire crossbred pigs of either
sex were housed individually, and maintained on a com-
mercial pelleted feed. Pigs were fasted for 24 h prior to
experimental surgery. General anesthesia was induced with
xylazine (1.5 mg/kg, IM), ketamine (11 mg/kg, IM), and
5% isoflurane vaporized in 100% O2 and was maintained
with 2% isoflurane delivered via an endotracheal tube. Pigs
were placed on a heating pad and ventilated with 100% O2

using a volume-limited, time-cycled ventilator (Hallowell,
Pittsfield, MA). Lactated Ringers solution was adminis-
tered iv at a maintenance rate of 15 ml/kg/h. The jejunum
was approached via a ventral midline incision. Jejunal seg-
ments were delineated by ligating the intestine at 10 cm
intervals, and subjected to ischemia by occluding the local
mesenteric blood supply for 45 min.
Ussing chamber studies and mucosal-to-serosal fluxes of
[3H]-mannitol
Following the 45 min ischemic period, tissues were har-
vested from the pig and the mucosa was stripped from the
seromuscular layer in oxygenated (95% O2/5% CO2) Ring-
ers solution (mM: Na+, 154; K+, 6.3; Cl−, 137; HCO3

−, 24;
pH 7.4) containing 10 μM indomethacin to prevent
endogenous prostaglandin production during the stripping
procedure. Tissues were then mounted in 3.14 cm2 aper-
ture Ussing chambers, as described in previous studies
[22-24]. For Ussing chamber experiments, tissues from one
pig were mounted on multiple Ussing chambers and sub-
jected to different in vitro treatments such as addition of
linaclotide or lubiprostone. Tissues were bathed on the
serosal and mucosal sides with 10 ml Ringers solution. The
serosal bathing solution contained 10 mM glucose and was
osmotically balanced on the mucosal side with 10 mM
mannitol. Bathing solutions were oxygenated (95% O2/5%
CO2) and circulated in water-jacketed reservoirs. The spon-
taneous potential difference (PD) was measured using
Ringer-agar bridges connected to calomel electrodes, and
the PD was short-circuited through Ag-AgCl electrodes
using a voltage clamp that corrected for fluid resistance.
TER (Ω/cm2) was calculated from the spontaneous PD and
short-circuit current (Isc). If the spontaneous PD was
between −1.0 and 1.0 mV, tissues were current-clamped at
100 A for 5 s and the PD recorded. Isc and PD were
recorded at 15 min intervals over a 180 min experiment.
To assess mucosal permeability after experimental treat-

ments, 0.2 Ci/ml [3H]-mannitol (180 Da) was added to the
mucosal side of tissues mounted in Ussing chambers. After
a 15 min equilibration period, standards were taken from
the mucosal side of each chamber and a 60 min flux period
was established by taking 0.5 ml samples from the serosal
compartment and counting 3H radioactivity. Unidirec-
tional [3H]-mannitol fluxes from mucosa-to-serosa were
determined using standard equations.

Western analysis of occludin in sucrose density gradient
based membrane fractions
Briefly, control or ischemic mucosal samples were homo-
genized in extraction buffer (50 mM Tris, 25 mM KCl,
5 mM MgCl2.6H2O, 2 mM EDTA, 40 mM NaF, 4 mM
Na3VO4, pH 7.4) containing 1% Triton X-100 and prote-
ase inhibitor cocktail. Homogenized samples were mixed
with an equal volume of 80% sucrose in extraction buffer
and loaded at the bottom of an ultracentrifuge tube. A
discontinuous sucrose gradient was layered on top of the
sample by placing 30%, 25%, 20%, and 5% sucrose and
the sample was then subjected to ultracentrifugation
(250,000 x g, 18 h at 4°C). Ten fractions were removed
from the top of each tube and fractions 3 to 10 (fractions
3 to 5 detergent insoluble and fractions 6–10 detergent
soluble fraction lanes on blot), as well as whole tissue
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lysate (normalized amount based on protein content)
were used for western blotting for occludin (rabbit anti-
occludin antibody, 1:250 dilution). The blots were
blocked in 5% milk-TBST for 2 h at room temperature,
followed by overnight incubation with primary antibody
at 4°C. Secondary antibody was HRP conjugated-goat
anti rabbit, and the signals were detected using chemilu-
minescence. Western analysis was carried out in 3
experiments.

T84 epithelial cell cultures, TER and experimental
procedures
T84 cells (ATCC) were grown in DMEM/Ham’s F-12
medium with 6% heat inactivated FBS, 15 mM HEPES,
14.3 mM NaHCO3, 100 U/ml penicillin, and 100 μg/ml
streptomycin sulfate, to confluence on 1.2 cm2 filters
(Corning Transwell 0.4 μm pore size). TER was measured
using an EVOM (Epithelial Volt-Ohm Meter, World Preci-
sion Instruments). T84 cells were treated mostly for 3–
4 days (if different, it is specified in each legend) with 200
nM of active linaclotide or 100 nM lubiprostone in the
absence or presence of 100 ng/ml IFN-γ or 50 ng/ml
TNF-α. Control cultures were treated with vehicle only.
Active linaclotide was dissolved in water and the vehicle
control for lubiprostone was 0.1% DMSO. They are labeled
in the figures as control and DMSO respectively.

Flux of fluorescent dextrans and LPS
T84 cells grown to confluence were treated with
compounds/vehicle for 3 days and then incubated with
0.1 mg/ml 3,000 Da FITC-dextran, 0.1 mg/ml 70,000 Da
rhodamine-dextran or 0.2 mg/ml FITC labeled E. coli 0111:
B4 LPS added to the apical surface for 24 h. FITC (494 nm
ex/518 nm em) or rhodamine (570 nm ex/590 nm em)
fluorescence of the media bathing the basolateral surface
was then measured. For FITC-LPS 530 nm em was used.

Occludin/actin ratios
T84 cells (106 cells/well) were grown in 12 well Coaster
clear bottom plates 48 h prior to the drug treatment.
The cells were incubated with or without 200nM active
linaclotide, 100 nM lubiprostone, or vehicle for 3 days.
Media were changed each day, and fresh active linaclo-
tide, lubiprostone and DMSO were added each day. The
cells were washed with cold PBS and lysed with cell
extraction buffer containing 1 mM PMSF. T84 cell
lysates were added to mouse anti-occludin or mouse
anti-β actin coated 96-well clear bottom plates, fixed and
stained with rabbit anti-occludin (InVitrogen) or
rabbit anti-β actin antibodies (Abcam), followed by
streptavidin-HRP labeled secondary antibodies. TMB
was used as substrate. HRP-substrate was quantified at
450 nm using a plate reader. The ratio of occludin/actin
for each experimental point was calculated. In
experiments with 100 ng/ml IFN-γ it was added to the
cells in the presence or absence of 200nM active linaclo-
tide, 100 nM lubiprostone, or vehicle for 3 days.

[Ca2+]i, plasma membrane potential, [cGMP]i and
mitochondrial membrane potential
[Ca2+]i, and plasma membrane potential were measured as
previously described [39] using indo-1 AM and the fluores-
cent membrane potential-sensitive dye, DiBAC4(3) respect-
ively before and after addition of compounds at different
concentrations. For [cGMP]i T84 cells (105 cells/well) were
grown in 96 well plates for 48 h. Compounds/vehicle were
added for 2 h and the cells were lysed with 0.1 M HCl-1%
Triton X-100 and centrifuged at 600 x g for 5 min. [cGMP]i
in T84 cell lysate was measured using a colorimetric cyclic
GMP immunoassay kit from Assay Designs (Ann Arbor,
MI) following the manufacturer’s instructions.
To measure the mitochondrial membrane potential, T84

cells (105 cells/well) were grown in 96 well Coaster black
clear bottom plates for 48 h. The cells were incubated with
and without 200 nM active linaclotide, 100 nM lubipros-
tone and vehicle for 3 days. Media were changed each day,
and fresh active linaclotide, lubiprostone and DMSO were
added each day. The cells were then washed with HBSS
and incubated with 12 μMmitochondrial dye JC-1 in HBSS
for 30 min. The plate was read at 490 nm ex/527 nm em
and 490 nm ex/590 nm em individually after each experi-
mental condition. 250 nM FCCP was added at the end of
each experiment and incubated for 1 h. The membrane
potential ratio was 590 nm fluorescence/527 nm fluores-
cence. The value obtained after FCCP treatment was
assigned a value of 0 mV and each individual FCCP ratio
was subtracted from each membrane potential ratio value.
The control fluorescence ratio was then assigned a value of
+224 mV and the mitochondrial membrane potential [μH
(mV)] for each experimental point was calculated. In
experiments with IFN-γ (100 ng/ml) it was added to the
cells in the presence or absence of 200 nM active linaclo-
tide, 100 nM lubiprostone or vehicle for 3 days.

Statistical analysis
Statistical analysis was carried out using Student’s t-tests for
comparison of two unpaired groups. In all cases, the data
was normally distributed with equal variance, allowing the
use of statistical tests for parametric data. The level of sig-
nificance was set at p< 0.05.

Results
Effects of active linaclotide and lubiprostone on (A)
TER; (B) paracellular flux of 3H-mannitol; (C) western
analysis of occludin and (D) Isc in control and ischemic
pig intestine
Repairing barrier properties has been shown to be an es-
sential and primary step in recovery after injury and
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lubiprostone has been shown to repair barrier properties
of intestinal epithelia [22-24], while nothing is known
regarding linaclotide. Therefore the effects of active lina-
clotide on barrier properties, occludin and Cl− secretion
were examined in control and ischemic pig jejunal mucosa
and compared to effects of lubiprostone. The results are
shown in Figure 1. In control intestine, 1000 nM (1 μM)
active linaclotide had no significant effect on TER, while
equimolar lubiprostone (1000 nM or 1 μM) caused a
significant increase in TER (from ΔTER=2.1±1.8 to
26.3 ± 6.2% mean basal (n= 5), p< 0.01) (Figure 1A) and
neither compound had any effect on 3H-mannitol flux
(Figure 1B). In control intestine occludin is present mainly
in the detergent-soluble fractions with a small amount in
detergent-insoluble fractions (Figure 1C) and both 1 μM
lu
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2 and 3) comparable to control and a large, significant in-
crease in Isc. These findings indicate that active linaclotide
alone has no effects and does not promote repair of the
epithelial barrier after ischemia, while lubiprostone signifi-
cantly promotes barrier repair, resulting in a tighter and
secreting mucosa. Despite the fact that both linaclotide
and lubiprostone cause comparable Cl− secretion at equi-
molar concentrations (Figure 1D), only lubiprostone
results in epithelial barrier repair, suggesting that Cl− se-
cretion per se does not lead to repair, whereas functional
ClC-2 plays a critical role. To further investigate active
linaclotide effects compared to lubiprostone, experiments
were conducted on T84 epithelial cells, a system that
allows measurement of additional barrier and homeostatic
mechanisms in controlled conditions using other patho-
physiological stressors.

Effects of active linaclotide and lubiprostone on IFN-γ-
and TNF-A-induced damage to T84 epithelial cell barrier
function and mitochondrial membrane potential
IFN-γ, a pro-inflammatory cytokine, reduces TER in part
through reduction of occludin levels and is thought to be
involved in the pathology of celiac sprue enteropathy
and inflammatory bowel disease (ulcerative colitis and
Crohn’s disease) [33-37]. Similar to IFN-γ, TNF-α also
causes loss of barrier function [34,36,37]. Lubiprostone
has been shown to promote repair of intestinal barrier
properties after ischemia in the pig intestine model
[22-24] whereas nothing is known of the effect of lina-
clotide. Therefore the effects of active linaclotide and lubi-
prostone on IFN-γ- and TNF-α-induced loss/disruption of
T84 epithelial cell barrier and cell function were
next examined. TER, mucosal to serosal FITC-LPS flux,
occludin/actin ratio and mitochondrial membrane
potential were measured. The results shown in Figure 2
are plotted as changes compared to vehicle controls (basal
levels are given in the legend). IFN-γ (100 ng/ml) signifi-
cantly reduced TER (Figure 2A, p< 0.0005), increased mu-
cosal to serosal FITC-LPS flux (Figure 2B, p< 0.0005),
decreased the occludin/actin ratio (Figure 2C, p< 0.0005)
and decreased the mitochondrial membrane potential
(Figure 2D, p< 0.0005). Active linaclotide had small IFN-
γ-counteracting effects (ca. 5.7%, 20%, 23% and 30%,
Figures 2A, B,C and D respectively), while lubiprostone
had greater effects (ca. 27.3%, 89%, 43.8% and 77.8%,
Figure 2A, B, C and D respectively), partially or totally pre-
venting/repairing the effects of IFN-γ. The significance of
the Δlinaclotide versus Δlubiprostone in the presence of
IFN-γ for Figure 2A, 2B, 2C & 2D were p< 0.0005,
p< 0.0005, p< 0.02 and p< 0.0005 respectively. Guanylin
(200 nM), STa (50 nM) and 8Br-cGMP (1 mM) had effects
similar to active linaclotide (data not shown). Active lina-
clotide was relatively ineffective, while lubiprostone was
significantly effective in protecting from or repairing the
detrimental effects of IFN-γ on T84 epithelial cell barrier
function and cell homeostasis. Thus, after IFN-γ lubipros-
tone, but not linaclotide, protected or repaired barrier and
cell function.
As shown in Figure 2E, TNF-α (50 ng/ml) also signifi-

cantly reduced T84 cell TER (p< 0.0005). Active linaclotide
had no effect on these changes, but lubiprostone partially
protected/repaired barrier function after TNF-α. Δlin wrt
Δlubi were significantly different (p< 0.02). Therefore after
TNF-α’s detrimental effects, lubiprostone, but not linaclo-
tide, significantly protected or repaired epithelial barrier
function. Methadone has been shown recently to inhibit re-
combinant ClC-2, but not recombinant CFTR Cl− currents
and to inhibit lubiprostone-stimulated Isc in T84 cells [26].
Therefore the effect of 1 μM methadone on lubiprostone’s
protective/reparative properties after TNF-α, as measured
by TER, was also investigated and compared with linaclo-
tide’s effects. The results are also shown in Figure 2E.
Methadone inhibited completely lubiprostone’s protective
or reparative effects on TER after TNF-α and had no effect
on linaclotide’s lack of barrier proetection or repair. These
findings confirm that lubiprostone’s protective or reparative
effects in T84 cells are mediated by functional ClC-2.
Stressors (inflammatory cytokines) had large effects on

epithelial barrier function and the mitochondrial mem-
brane potential. However even in the absence of stressors
or injury, there were also small, but statistically significant
negative changes evident with linaclotide alone. In contrast
lubiprostone alone had no negative effects on the measured
parameters. The physiological significance of the small but
statistically significant differences between effects of lina-
clotide and lubiprostone alone remain unclear.

Effects of active linaclotide and lubiprostone on T84
(a) [cGMP]I, (B) [Ca2+]I and (C) plasma membrane
potential
Increases in [cGMP]i and [Ca2+]i have been shown with
linaclotide and guanylin and changes in occludin occur
with breakdown of barrier function [8,33,35,36,40]. There-
fore active linaclotide effects on [cGMP]i, [Ca2+]i and
plasma membrane potential were investigated and
compared with effects of lubiprostone. The results are
shown in Figure 3 as changes that occurred compared to
vehicle controls (basal levels are given in the legend).
Active linaclotide significantly increased [cGMP]i while
lubiprostone significantly decreased [cGMP]i (Figure 3A,
p< 0.0005). Active linaclotide and PGE1 signifi-
cantly increased [Ca2+]i, while lubiprostone significantly
decreased [Ca2+]i (Figure 3B, p values are given in the
figure legend). Figure 3C shows that active linaclotide sig-
nificantly depolarized the plasma membrane potential,
while lubiprostone significantly hyperpolarized the plasma
membrane potential (p values are given in the figure
legend). Thus active linaclotide, but not lubiprostone,
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resulted in increased [cGMP]i as expected and increased
[Ca2+]i. Effects on the plasma membrane potential suggest
that lubiprostone, but not linaclotide, leads to cell
stabilization, that helps maintain cellular homeostasis.
Effects of active linaclotide compared to guanylin, STa.
and 8BrcGMP on T84 cells
Linaclotide has major significant structural homologies
with guanylin, uroguanylin and especially heat stable
enterotoxin, STa [5,8,41], all of which (including linaclo-
tide) activate guanylate cyclase, GC-C resulting in
increased [cGMP]i. Therefore effects of active linaclotide
on T84 cells were compared with those of guanylin, STa
and 8BrcGMP. Both active linaclotide and guanylin signifi-
cantly increased [cGMP]i in a dose-dependent manner
with EC50 values of 15.9± 7.4 and 29.3 ± 18.4 nM (n=6)
respectively as shown in Figure 4A & 4B. Figure 4C shows
that like 200 nM linaclotide, 200 nM guanylin, 50 nM STa
and 1 mM 8BrcGMP all reduced T84 epithelial cell TER
significantly (p< 0.0005) as compared with 100 nM lubi-
prostone which caused a slight increase in TER. Figure 4D
& 4E show that like 200 nM linaclotide, 200 nM guanylin
resulted in significantly (p< 0.0005) increased mucosal to
serosal fluxes of 3,000 Da FITC-dextran (Figure 4D) and
70,000 Da rhodamine-dextran (Figure 4D) compared to
lubiprostone which resulted in decreases of these fluxes.
These effects on epithelial barrier function were small
compared to effects of stressors (see Figure 2) and their
physiological relevance or significance remains unclear.
Nevertheless, these findings confirm that active linaclotide
and well established GC-C activators such as guanylin and
STa and the membrane permeant 8BrcGMP have similar
effects on barrier function of T84 cells.

Discussion
Linaclotide is being developed for treatment of CIC and
IBS-C [1-6]. Like lubiprostone, linaclotide has been
reported to increase chloride and water secretion and
exert antinociceptive effects in rats [8-10]. In clinical
trials, like lubiprostone, linaclotide improved bowel
symptoms, transit time and abdominal discomfort or
pain in patients with ClC and IBS-C [1-6,11-16,19,20].
Linaclotide appears to be safe and effective and is cur-
rently under review by the FDA and EMA, while lubi-
prostone is FDA-approved for use in ClC and IBS-C.
Unlike lubiprostone that activates the ClC-2 Cl− channel
[17,18], linaclotide acts through stimulation of guanylate
cyclase C resulting in increased [cGMP]i [7-9]. Compari-
son of these two drugs is of particular interest since they
have different cellular mechanisms of action. An add-
itional distinct property of lubiprostone is its ability to
repair/protect epithelial barrier function after injury or
exposure to stressors [22-24]. ClC-2 has been shown to
be important for maintenance and repair of barrier func-
tion after injury, which also coincided with occludin
movement back into apical aspects of the epithelial tight
junctions where ClC-2 is also localized [23]. In fact it has
been shown that ClC-2 modulates tight junction barrier
function via intracellular trafficking of occludin [25].
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Whether linaclotide also exhibits this barrier reparative/
protective property after injury or exposure to stressors
has not been previously studied.
Active linaclotide, the 13 amino acid peptide produced by

hydrolysis of the pro-drug linaclotide, used in the present
study, increased [cGMP]i in T84 cells by activating GC-C,
demonstrating that the peptide was folded properly. Positive
controls included guanylin which also activates GC-C, and
NaNP, which activates the soluble form of guanylate cyclase,
yielding much higher levels of [cGMP]i in T84 cells than
linaclotide.
Lubiprostone, but not active linaclotide was effective at
promoting repair of the pig jejunal intestinal mucosa after
acute ischemic injury, as measured by TER changes, 3H-
mannitol fluxes and cellular occludin localization. Although
Cl− secretion as measured by short-circuit current was
similar in control intestine stimulated by linaclotide and
lubiprostone (both at 1 μM), after ischemia, only lubipros-
tone, but not linaclotide resulted in Cl− secretion, not sig-
nificantly different from control intestine. Thus epithelial
barrier properties and Cl− secretion were repaired/returned
close to normal with lubiprostone, but not linaclotide.
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Despite the fact that both linaclotide and lubiprostone
cause Cl− secretion, only lubiprostone resulted in epithelial
barrier repair, suggesting that Cl− secretion per se does not
lead to repair, whereas functional ClC-2 plays an essential
role [22-25].
Experiments were carried out on T84 cells treated with

IFN-γ or TNF-α to investigate whether effects of inflamma-
tory cytokines as stressors could also be attenuated by lina-
clotide or lubiprostone. The lubiprostone concentration
chosen for these studies (100 nM) was 5 x EC50 for Cl−

secretion activation [17]. The concentration of linaclotide
was chosen to be twice that of lubiprostone, although the
molar concentration ratio of linaclotide/lubiprostone used
in treatment of CIC in the clinical setting is 3:1 [1,12]. Simi-
lar to effects on pig jejunal mucosal barrier, in T84 cells
active linaclotide was not very effective at protecting or
repairing barrier properties after injury by either IFN-γ or
TNF-α, as measured by ΔTER and Δfluorescent LPS flux.
Neither was it very effective at preventing injury-induced
mitochondrial potential depolarization or causing return of
occludin levels to normal. In contrast lubiprostone was very
effective at protecting or repairing barrier and cell function
as well as occludin levels after cytokine injury. Lubipros-
tone effects on the epithelial mucosal barrier were expected
since it has been previously shown to promote repair of
intestinal mucosa barrier properties after ischemia [22-24].
In addition, the protective/reparative effects of lubiprostone
on TNF-α-induced decreased TER were completely inhib-
ited by 1 μM methadone, a ClC-2 inhibitor [26]. Metha-
done had no effect on linaclotide effects. These findings
indicate that lubiprostone’s barrier reparative properties are
mediated by ClC-2, also supported by the fact that barrier
repair is lacking in ClC-2−/− mice [23].
The importance of the reparative properties of lubi-

prostone for IBS-C and CIC is unclear, since the role of
intestinal permeability remains controversial in IBS-C
[27-32] and seemingly has not been investigated in CIC.
In addition IBS-C and CIC are symptomatic diseases
which do not appear to have clear physiological or bio-
chemical markers that define them. However, in the fu-
ture these properties may prove to be important for
treatment of other intestinal diseases, where increased
intestinal permeability or inflammation (which may
release inflammatory cytokines) appear to occur [33-37].
In the present study, effects of active linaclotide alone on

T84 cell properties and parameters were noted, and they
were opposite to those seen with lubiprostone. However
although statistically significant, these effects were relatively
small compared to stressor effects and they are difficult to
relate to the physiology of intestinal mucosal tissue or the
intact animal. Active linaclotide increased [cGMP]i as
expected [7-9], increased [Ca2+]i and caused depolarization
of both the mitochondrial membrane potential and the
plasma membrane potential. One of the consequences of
high [cGMP]i (whether from STa activation of GC-C or
exogenous 8BrcGMP) includes activation of a cyclic
nucleotide gated Ca2+ channel causing increased [Ca2+]i
[40], which could cause depolarization of both mitochon-
drial and plasma membrane potentials. As found with lina-
clotide, guanylin, STa and 8BrcGMP decreased TER in
T84 cells and guanylin was to found to increase fluxes of
fluorescent dextrans. Therefore linaclotide clearly acts
similarly to well established GC-C activators and mem-
brane permeant cGMP. Guanylin, uroguanylin and STa
also activate K+ channels by a separate mechanism [7]. If
linaclotide also has such effects, they may be responsible
for the depolarization of the intestinal plasma membrane.
However linaclotide effects on K+ channels were not stud-
ied in the present study. In contrast, lubiprostone had no
effect on [cGMP]i, significantly decreased [Ca2+]i, had no
effect on the mitochondrial membrane potential and
caused hyperpolarization of the plasma membrane poten-
tial. These cellular effects likely render the cells in a more
stabilized state, while linaclotide has the opposite effect.
These findings distinguish linaclotide from lubiprostone
and the prostones in general, which do not change
[cGMP]i, [Ca2+]i or mitochondrial membrane potential
and hyperpolarize rather than depolarize the plasma mem-
brane potential. These effects may contribute not only
to cell stability, but also may play a role in lubipros-
tone’s reparative/protective properties.
Both linaclotide and lubiprostone ameliorate clinical

symptoms of CIC and IBS-C. However they have differ-
ent mechanisms of action and have different cellular
effects. Linaclotide does not appear to have the add-
itional distinct epithelial barrier reparative/protective
properties of lubiprostone.

Conclusions
In summary, in this in vitro study, active linaclotide did
not exhibit the distinct epithelial barrier reparative proper-
ties shown by lubiprostone after ischemic injury to the pig
intestine or lubiprostone’s protective/reparative properties
after inflammatory cytokine exposure of T84 cells. Lubi-
prostone’s barrier protective/reparative effect after TNF-α
in T84 cells was abolished by methadone, a ClC-2 inhibi-
tor, indicating that lubiprostone’s effects are mediated by
ClC-2. Linaclotide increased [cGMP]i as expected, but also
increased [Ca2+]i, and caused depolarization of both the
mitochondrial and plasma membrane potentials. This was
in contrast/opposite to lubiprostone that had no effect on
[cGMP]i, [Ca

2+]i and mitochondrial membrane potential
and hyperpolarized the plasma membrane potential. As
found with linaclotide, guanylin, STa and 8BrcGMP
decreased TER in T84 cells and guanylin also increased
fluxes of fluorescent dextrans. Therefore linaclotide clearly
acts similarly to well established GC-C activators and
exogenous membrane permeant cGMP. Stressors can
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induce pathophysiological changes in barrier function.
Considering the physiological importance of epithelial bar-
rier function and cell integrity and the known impact of
stressors, lubiprostone, but not active linaclotide, exhibits
the additional distinct property of protecting or repairing
the epithelial barrier and cell function after stress. This may
be beneficial to patients with impaired or compromised
epithelial barrier function such as might occur in IBS.
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