BMC Pharmacology

MEETING ABSTRACT

Open Access

Neuropeptide Y Y₂ receptors modulate trace fear conditioning and spatial memory in the dorsal hippocampus

Ramon O Tasan^{1*}, Dilip Verma¹, Mario Mietzsch², Stefan Weger², Regine Heilbronn², Herbert Herzog³, Günther Sperk¹

From 17th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Hungarian Society of Experimental and Clinical Pharmacology (MFT) Innsbruck, Austria. 29-30 September 2011

Background

Neuropeptide Y (NPY), a highly conserved 36 amino acid peptide is widely distributed in the central nervous system. Besides its functions in various metabolic processes NPY has attracted considerable attention in modulating emotional-affective behavior. NPY exerts a pronounced anxiolytic effect most likely mediated by Y_1 receptors, whereas stimulation of predominantly pre-synaptic Y_2 receptors results in increased anxiety. The role of NPY Y_2 receptors in the processing of emotional learning, however, remains still elusive.

Methods

The current study aims to investigate the role of NPY Y_2 receptors in Pavlovian fear conditioning, a simple form of associative learning and in a spatial memory task, the Barnes maze. Y_2 -KO mice were subjected to delay (amygdala-dependent) and trace (hippocampus-dependent) fear conditioning paradigms.

Results

While in delay fear conditioning Y_2 -KO mice performed similar to wild-type controls, recall of a trace fear memory was significantly increased in Y_2 -KO mice. Furthermore, Y_2 -KO mice exhibited an improved long-term memory in the Barnes maze test, a paradigm investigating spatial learning. Trace fear conditioning and spatial memory are predominantly mediated by the dorsal hippocampus. For investigating the specific contribution of

 $\rm Y_2$ receptors in the adult dorsal hippocampus in trace fear conditioning and spatial memory formation we locally deleted hippocampal $\rm Y_2$ receptors in conditional $\rm Y_2$ -KO mice by injection of a rAAV-CreGFP vector. Moreover we over-expressed NPY₃₋₃₆, an $\rm Y_2$ receptor preferring agonist, at the same brain sites.

Conclusions

Our data indicate that while Y_2 receptors are not involved in amygdala-dependent delay fear conditioning, they seem to play an inhibitory role on the acquisition of trace fear memories. Moreover, Y_2 receptors in the dorsal hippocampus are crucial for spatial memory formation. These actions are probably mediated by inhibition of glutamate release in dorsal hippocampal circuitries.

Acknowledgements

This work was funded by the Austrian Science fund (S10204 and P22830-B18).

Author details

¹Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria. ²Institute of Virology, Charité, Campus Benjamin Franklin, Free University of Berlin, 12203 Berlin, Germany. ³Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.

Published: 5 September 2011

doi:10.1186/1471-2210-11-S2-A2

Cite this article as: Tasan et al.: Neuropeptide Y Y₂ receptors modulate trace fear conditioning and spatial memory in the dorsal hippocampus. BMC Pharmacology 2011 11(Suppl 2):A2.

Full list of author information is available at the end of the article

^{*} Correspondence: ramon.tasan@i-med.ac.at

¹Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria