

POSTER PRESENTATION

Open Access

Suppression of kidney fibrosis by cGMP-dependent protein kinase I

Elisabeth Schinner^{1*}, Armin Kurtz², Franz Hofmann³, Jens Schlossmann¹

From 5th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Halle, Germany. 24-26 June 2011

Background

cGMP is synthesized via nitric oxide- or natriuretic peptide-stimulated guanylyl cyclases and exhibits pleiotropic regulatory functions also in the kidney. Hence, the integration of cGMP signaling via cGMP-dependent protein kinases (cGK) might play a critical role for renal physiology. Both isozymes were detected in arterioles, mesangium and within the cortical interstitium. In contrast to cGKI α , the β isoform was not detected in the juxtaglomerular apparatus and medullary fibroblasts.

Results

Here, we examined the function of cGKI in the renal interstitium emphasizing a functional differentiation of both isoforms. The interstitium exists mainly of fibroblasts playing a prominent role in the interstitial fibrosis. Accordingly, cGKI could also be involved in this pathophysiological process. Therefore, we studied whether cGKI influences renal fibrosis by application of cGMP increasing YC-1 or ISDN and by using mutant mice. The kidney-fibrosis was induced by unilateral ureter obstruction (UUO).

Conclusion

Administration of ISDN showed significantly antifibrotic effects in wt- but not in αSM -rescue mice. Also tg-tg mice which express more cGKI α developed significantly less fibrosis than wt mice. Moreover, mRNA- and protein expression of cGKI β was fewer influenced by fibrosis than cGKI α . Accordingly, our results indicate that cGMP acts primarily via cGKI α as an important suppressor of kidney fibrosis.

Author details

¹Pharmakologie und Toxikologie, Universität Regensburg, Germany. ²Physiologie, Universität Regensburg, Germany. ³Carvas-Zentrum, TU München, Germany.

Published: 1 August 2011

doi:10.1186/1471-2210-11-S1-P62

Cite this article as: Schinner *et al*: Suppression of kidney fibrosis by cGMP-dependent protein kinase I. *BMC Pharmacology* 2011 11(Suppl 1): P62

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: elisabeth.schinner@chemie.uni-regensburg.de ¹Pharmakologie und Toxikologie, Universität Regensburg, Germany Full list of author information is available at the end of the article