

POSTER PRESENTATION

Open Access

Conjoined NO-sensitive guanylyl cyclases

Sönke Behrends*, Mareike Busker, Nadine Haase, Tobias Haase, Jan Krähling, Monika Linnenbaum

From 5th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Halle, Germany. 24-26 June 2011

Background

NO-sensitive guanylyl cyclases (NO-GC's) that catalyze the reaction of GTP to the second messenger molecule cGMP are heterodimeric enzymes consisting of an α and a β_1 subunit. The two prevalent isoforms in humans $(\alpha_1/\beta_1,\,\alpha_2/\beta_1)$ are time-tested targets for drugs that release nitric oxide (NO) and new compounds that either sensitize the enzyme for activation by NO or activate the enzyme independently of NO. Homologous NO-GC subunits consist of an amino-terminal HNOX domain followed by a PAS- and a coiled coil domain and the carboxy-terminal catalytic domain.

Results

Measurement of FRET between fluorescent proteins tagged to the amino- and carboxy-terminus of the subunits indicated close proximity between the amino-terminal HNOX domains and the carboxy-terminal catalytic domains of the enzyme. On the basis of these results we constructed conjoined NO-GC's by fusion of the α amino-terminus to the β_1 carboxy-terminus leading to a monomeric enzyme complex. Surprisingly but in accordance with the FRET results these conjoined NO-GC's ($\beta_1\alpha_1$, $\beta_1\alpha_2$) showed specific enzyme activity and stimulation by NO and various modulators of GC activity.

Conclusion

These obligate enzyme variants faithfully reproduced the pharmacological properties of the heterodimeric enzymes including an isoform specific differential activation of the NO-independent drug cinaciguat. Novel applications of conjoined NO-GC's including adenoviral gene transfer will be discussed.

Published: 1 August 2011

* Correspondence: s.behrends@tu-bs.de Institut für Pharmakologie, Toxikologie und Klinische Pharmazie, TU Braunschweig, Germany doi:10.1186/1471-2210-11-S1-P6

Cite this article as: Behrends *et al.*: **Conjoined NO-sensitive guanylyl cyclases.** *BMC Pharmacology* 2011 **11**(Suppl 1):P6.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

