BMC Pharmacology ## **POSTER PRESENTATION** **Open Access** # cGMP-dependent protein kinase from Toxoplasma gondii: functional expression in E. coli and molecular characterization Caitlin J McFarland^{1*}, Christian K Nickl¹, Brent W Osborne¹, Indra Neil Sarkar², Wolfgang R Dostmann¹ From 5th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Halle, Germany. 24-26 June 2011 ## **Background** The apicomplexan parasite *Toxoplasma gondii* is an obligate intracellular human pathogen causing toxoplasmosis predominantly in immune-compromised hosts such as cancer and transplant patients as well as patients with AIDS [1]. A specific cGMP-dependent protein kinase (*Tg*PKG) which appears to be crucial for host invasion has been identified in *T. gondii* and related coccidial protozoa [2]. However, detailed structural and biochemical analyses have been hampered due to the inability to functionally express these kinases in high yields in systems other than their parasite host organisms. #### **Results** Here we describe the expression, purification and initial characterization of the 911 amino acid (103 kDa) Histagged type II isoform of TgPKG using a bacterial source. A phylogenetic analysis further reveals that TgPKG2 belongs to an evolutionarily distinct sub-group of the AGC-kinase family. The overall domain composition of TgPKG2 substantially deviates from its mammalian cousins at two regions. First, the 196 amino acid Nterminal/auto-inhibitory domain bears no resemblance with any other PKG subfamily, and secondly the kinase consists of three cGMP binding sites with the third binding sites separated from the others by 135 amino acids. Consequently, TgPKG2 illustrated a remarkable level of cooperativity ($n_H = 2.9$) accompanied by a 200-400 fold cGMP-mediated activation utilizing the common PKG substrate TQAKRKKSLAMA ($K_m = 9 \mu M$). The associated activation constant was 1.7 μ M which is in full agreement with the isoforms obtained from T. gondii parasite extract [3]. Interestingly, TgPKG2 was completely insensitive to cAMP (K_a » 100 μ M). Recently, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H pyrrol-3-yl] pyridine (Compound 1) was shown to exhibit anticoccidial kinase activity [3,4]. Compound 1 blocked kinase activity of TgPKG2 with high potency (IC_{50} = 59 nM) and high selectivity; the mammalian type $I\alpha$ PKG showed an approximately 1000-fold reduced IC_{50} of 45 μ M. ### Conclusion This work demonstrates the first catalytically active expression of any cGMP-dependent protein kinase from *E. coli* and may provide a new platform for the functional and structural analysis, as well as evolutionary history, of PKG isoforms from apicomplexan parasites. #### **Author details** ¹Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA. ²Center for Clinical & Translational Science, Department of Microbiology & Molecular Genetics and Department of Computer Science, University of Vermont, Burlington, VT 05405, USA. Published: 1 August 2011 #### References - Nare B, Allocco JJ, Liberator PA, Donald RG: Evaluation of a cyclic GMPdependent protein kinase inhibitor in treatment of murine toxoplasmosis: gamma interferon is required for efficacy. Antimicrob Agents Chemother 2002, 46:300-307. - Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RG, Anderson JW, Wiltsie J, Diaz CA, Harris G, Chang B, Darkin-Rattray SJ, Nare B, Crumley T, Blum PS, Misura AS, Tamas T, Sardana MK, Yuan J, Biftu T, Schmatz DM: Purification and molecular characterization of cGMP- dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic target. J Biol Chem 2002, 277:15913-15922. Full list of author information is available at the end of the article ^{*} Correspondence: cjmcfarl@uvm.edu ¹Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA - Donald RG, Allocco J, Singh SB, Nare B, Salowe SP, Wiltsie J, Liberator PA: Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase. Eukaryot Cell 2002, 1:317-328 - Donald RG, Zhong T, Wiersma H, Nare B, Yao D, Lee A, Allocco J, Liberator PA: Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Mol Biochem Parasitol 2006, 149:86-98. #### doi:10.1186/1471-2210-11-S1-P45 Cite this article as: McFarland *et al.*: cGMP-dependent protein kinase from Toxoplasma gondii: functional expression in E. coli and molecular characterization. *BMC Pharmacology* 2011 11(Suppl 1):P45. # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit