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Abstract

damaging drugs.

associated and triple-negative breast cancer.

Background: Breast cancers due to germline mutations or altered expression of the BRCAT gene associate with an
aggressive clinical course and frequently exhibit a “triple-negative” phenotype, i.e. lack of expression of the
estrogen and progesterone hormone receptors and lack of overexpression of the HER2/NEU oncogene, thereby
rendering them relatively insensitive to hormonal manipulation and targeted HER2 therapy, respectively. BRCA1
plays a role in multiple DNA repair pathways, and thus, when mutated, results in sensitivity to certain DNA

Results: Here, we used a Brcal murine mammary epithelial cell (MMEC) model to examine the effect of loss of
Brcal on cellular sensitivity to various chemotherapy drugs. To explore novel therapeutic strategies, we included
DNA damaging and non-DNA damaging drugs whose mechanisms are dependent and independent of DNA
repair, respectively, and drugs that are used in standard and non-standard lines of therapy for breast cancer. To
understand the cellular mechanism, we also determined the role that DNA repair plays in sensitivity to these drugs.
We found that cisplatin and gemcitabine had the greatest specific therapeutic benefit to Brcal-deficient MMECs,
and that when used in combination produced a synergistic effect. This sensitivity may be attributed in part to
defective NER, which is one of the DNA repair pathways normally responsible for repairing DNA adducts produced
by cisplatin and is shown in this study to be defective in Brcal-deficient MMECs. Brcal-deficient MMECs were not
differentially sensitive to the standard breast cancer chemotherapy drugs doxorubicin, docetaxel or 5-FU.

Conclusions: Both cisplatin and gemcitabine should be explored in clinical trials for first line regimens for BRCA1-

Background

Inheritance of a mutation in the BRCAI gene confers a
45-65% average lifetime risk for developing breast can-
cer and an increased risk for developing ovarian cancer
[1]. While germline mutations in BRCAI account for 5%
of breast cancer cases, evidence suggests that epigenetic
silencing of BRCAI by promoter hypermethylation and
other mechanisms may contribute to up to 30% of
sporadic breast cancers [2-7]. BRCAI-associated breast
cancers have a characteristic phenotype; in general,
these tumors have a high mitotic index, contain p53
mutations, and often exhibit a triple-negative phenotype
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(i.e. lack of expression of estrogen and progesterone
receptors and lack of overexpression of the HER2/NEU
oncogene) [8,9]. This triple-negative status renders
BRCA1I-associated cancers insensitive to hormonal
manipulation or targeted therapy with trastuzumab,
respectively. With the exception of PARP inhibitors, an
investigational therapeutic strategy for BRCA-deficient
cancers [10], empirically chosen cytotoxic chemotherapy
is the primary option for treating patients with BRCA1-
associated and triple-negative breast cancer.

BRCA1 plays multiple roles in DNA damage response
pathways. BRCAIL has a well-established role in DNA
double-strand break repair [11]. More recently our lab
has shown that BRCA1 is involved in DNA base-exci-
sion repair (BER) [12] and nucleotide-excision repair
(NER) [13,14]. BER repairs single base-pair lesions that
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are typically induced by endogenous agents, such as oxi-
dative byproducts of normal cellular metabolism. NER
functions to repair bulky lesions or DNA adducts
induced by exogenous means such as ultraviolet (UV)-
irradiation, carcinogens including polyaromatic hydro-
carbons and tobacco, and certain chemotherapy agents
such as cisplatin. NER can be subdivided into two
genetically distinct subpathways: global genomic repair
(GGR) that removes lesions from the whole genome and
transcription-coupled repair (TCR) that removes lesions
from actively transcribed DNA. We have shown in
human tumor cells that BRCA1 directly affects the GGR
subpathway of NER, and that this function may occur
through transcriptional regulation of NER genes
involved in the recognition of adducts in genomic DNA,
including XPC and DDB2 (the genes mutated in xero-
derma pigmentosum complementation groups C and E,
respectively) [13].

Cellular characteristics that contribute to carcinogen-
esis, such as defects found in DNA repair pathways,
may be exploited for cancer therapy. For example, can-
cer cells deficient in BRCA1 tend to exhibit defective
DNA repair, and in turn, are sensitive to drugs such as
mitomycin C and cisplatin, which induce intrastrand
and interstrand DNA crosslinks, stalled replication
forks, and DNA double-strand breaks [15-20], and
PARP inhibitors, which through a synthetic lethal
mechanism further inhibit DNA repair mechanisms and
promote cytotoxicity [21,22].

Here, we used an isogenic Brcal murine mammary
epithelial cell (MMEC) model to examine the specific
effect of loss of Brcal on cellular sensitivity to various
chemotherapeutic agents in a manner beyond that
achievable in less well-characterized human tumor cell
lines. We included DNA damaging and non-DNA
damaging drugs whose mechanisms are dependent and
independent of DNA repair, respectively, and drugs that
are used in standard and non-standard lines of therapy
for breast cancer.

Methods

Cell Lines

Brcal*'* and Brcal”’” MMECs were kindly provided by
the laboratory of Kenneth H. Cowan (Eppley Institute
for Research in Cancer and Allied Diseases, University
of Nebraska Medical Center) and were cultured as pre-
viously described [23]. MMECs were isolated from
Brcal™ mice [24]. These mice carry loxP sites flanking
exon 11 of the Brcal gene and develop normally.
Brcal™ MMECs were infected with an HPV-16E6 (Neo
) retrovirus to inhibit p53 function and immortalize the
cells. Brcal”’~ MMECs were generated by deleting exon
11 of Breal following transfection with pBabe-Cre (Puro
*) retrovirus.
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Real-time RT-PCR (RT-qPCR)

Total RNA was isolated and purified using RNeasy Pro-
tect Mini Kit (Qiagen) with the following modifications.
Cells were homogenized using the QIAshredder column
(Qiagen) and the resulting lysates treated with RNase-
Free DNase (Qiagen) to remove genomic DNA. Total
RNA (2.5 pg) from each sample was reverse transcribed
using SuperScript™ III First-Strand Synthesis System
(Invitrogen) to create cDNA libraries. The Platinum®
SYBR® Green qPCR SuperMix-UDG (Invitrogen) was
used for PCR of ¢cDNA samples in a protocol consisting
of 50 cycles of denaturation (95°C for 15 sec), primer
annealing (57°C for 30 sec), and primer extension (72°C
for 30 sec) using an ABI PRISM 7900 Sequence Detec-
tion System (Applied Biosystems). For calibration and
generation of standard curves, we used cDNA from
mouse embryo fibroblasts as reference standards [25].
All reactions were carried out in triplicate with minimal
Ct variability seen. The transcript level of each gene was
normalized to that of Gapdh and expressed as fold
induction over 0-hour reference level to examine UV
damage-inducible transcripts and over untreated control
to examine drug-inducible transcripts. The mouse Ddb2
primers used were 5-GCCGATACCCAGATCCTA
ATCTT-3" and 5-ACACATCATCTTCCCTGAGCTTC-
3’. The mouse Xpc primers used were 5-ATCATTCCA
ATTCGCTTTACCAA-3" and 5-GTTCCGATGAAC
CACTTTACCAG-3". The mouse Xpa primers used
were 5-CACCAAAGGTGGCTTCATTTTAG-3’ and 5-
TGGTGTAATCAAACTCCATGACG-3'. The mouse
Gapdh primers used were 5-GGAGAAACCTGC
CAAGTATGATG-3" and 5GACAACCTGGTCCTC
AGTGTAGC-3.

GGR Assay

Repair of DNA adducts, cyclobutane pyrimidine dimers
(CPDs) and 6-4 photoproducts (6-4PPs), from total geno-
mic DNA at different times following UV-irradiation was
measured using an immunoslot blot assay as previously
described [13,26]. To control for replication, *H-thymidine
labeled cells were used. Monoclonal antibodies specific for
either CPDs (1:1000) or 6-4PPs (1:500) were kindly sup-
plied by Toshio Mori (Nara Medical University, Japan).
Genomic DNA from unirradiated cells was loaded as a
control for nonspecific antibody binding. Data from tripli-
cate DNA samples from three different biological experi-
ments were averaged and normalized to the unrepaired
damaged control (i.e. UV = 10 J/m?, Time = 0). Statistical
analysis of differences in DNA repair curves due to expres-
sion of Brcal were performed using the unpaired T-test.

TCR Assay
To determine the rate of removal of adducts from the
transcribed strand of a specific gene fragment, strand-
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specific RNA probes were used to evaluate the fre-
quency of CPDs in a 14-kb BamH1 restriction fragment
spanning the central region of the mouse Dhfr gene, as
previously described [27,28]. Cells were irradiated with
10 J/m® of UV-C, lysed immediately for an initial sample
(time = 0), or incubated for up to 24 hrs to allow lesion
repair. The frequency of induction and rate of removal
of CPDs from the transcribed strand and non-tran-
scribed strand of the Dhfr gene was measured by treat-
ing purified BamHI-digested DNA with bacteriophage
T4 endonuclease V (generously supplied by R. Stephen
Lloyd, Oregon Health Sciences University), and then
quantifying the reappearance of the full-length restric-
tion fragments in DNA from cells allowed various times
to remove the lesions using denaturing electrophoresis
and Southern blotting.

Cell Sensitivity Assays

For UV sensitivity, cells were plated in 96 well plates at
a density of 10° cells/well in triplicate and allowed to
attach overnight. Cells were then washed with PBS,
exposed to UV-C irradiation at doses of 0, 5, 10, 20, and
30 J/m? and allowed to recover for 48 hours. For drug
sensitivity, cells were plated in triplicate and allowed to
attach overnight. Cells were treated with increasing con-
centrations of doxorubicin, 5-FU, or paclitaxel for 48
hours, or cisplatin (Sigma-Aldrich), carboplatin, oxalipla-
tin, or gemcitabine for 72 hours. Drugs were provided
by the Stanford Cancer Center unless otherwise indi-
cated. Incubation times were determined to be the
shortest number of 24 hour periods that produced a full
dose-response curve and were carried out at 37°C and
5% CO,. Media was then removed and replaced with
fresh media containing 1 mg/ml 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution
until formation of formazan crystals (~3 hours). The
MTT formazan crystals were dissolved in DMSO (200
ul/well) and glycine buffer (25 ul/well). Absorbance was
measured at 570 nm with a VERSAmax microplate
reader (Molecular Devices) and a logarithmic plot of
absorbance versus UV dose or drug concentration
recorded. Cell viability was expressed as the ratio of the
treated cells to that of the untreated controls at each
dose or concentration. The ICs5, value for each cell line
was determined using SoftMax™ Pro software (Molecu-
lar Devices) and statistical significance calculated by stu-
dents t-test using the average ICs, values from multiple
independent experiments.

Combination Treatment

Cells were treated with cisplatin and gemcitabine alone
and in various dose combinations for 48 hours and then
subjected to the MTT assay described above. Isobolo-
gram analysis differentiated between antagonism,
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synergism, and additive effects as previously described
[29]. Combination index was determined as described
by Chou and Talalay [30].

Alkaline Comet Assay

At 24 hours following treatment with drug, cells were
subjected to the alkaline comet assay for the detection
of DNA strand breaks as previously described [31].
Briefly, cells were embedded at low density onto comet
slides, lysed, exposed to alkaline conditions to denature
DNA, and subjected to electrophoresis. DNA was
stained with SYBR™ green and visualized by fluorescent
microscopy as a comet in shape. The percentage of
DNA in the comet tails, i.e. DNA damage, was calcu-
lated using CometScore software (TriTek Corporation).

Results

Characterization of the Cellular System
BRCA1-associated cancers, including hereditary breast
cancers due to germline mutations and sporadic breast
cancers associated with promoter hypermethylation,
have reduced or complete loss of expression of BRCA1
protein, and are frequently accompanied by mutations
in TP53 [2,8,32,33]. Therefore, to study the effect of loss
of BRCA1 expression on chemosensitivity to DNA
repair- dependent and independent drugs, we used
Brcal®™* and Brcal”’~ MMECs that were generated by
disrupting the Brcal gene in MMECs immortalized and
p53-inactivated by infection with HPV-16E6. These cells
have previously been shown to have undergone homozy-
gous deletion of Brcal exon 11 and to have lost expres-
sion by RT-PCR, Northern and Western blotting [23].
RT-PCR confirmed the expression and loss of expres-
sion of Brcal in Breal*'* and Brcal’~ MMECs, respec-
tively (data not shown). The Brcal”” MMECs have also
been reported to harbor defective DNA base-excision
repair [12] as well as increased genetic instability [34]
compared to Brcal®’* MMECs, which is typical of
BRCA1-mutant breast cancer cells. Furthermore, the
Brcal™* and Brcal”’~ MMECs showed similar prolifera-
tion rates (data not shown), which allowed for direct
comparison of sensitivity to various drugs.

Effect of Loss of Brcal on Sensitivity to DNA Damaging
Agents

We examined the effect of loss of Brcal on sensitivity to
DNA damaging agents, including doxorubicin, cisplatin,
carboplatin, and oxaliplatin. Doxorubicin is an anthracy-
cline that inhibits topoisomerase II and thereby pro-
duces DNA double-strand breaks; it is commonly used
in the treatment of breast cancer. Cisplatin, carboplatin,
and oxaliplatin are platinum agents, which induce intra-
and inter-strand DNA crosslinks that are typically
repaired by NER, or when left unrepaired, convert to
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DNA double-strand breaks. Following treatment with
increasing concentrations of each drug, Brcal*'* and
Brcal”’” MMECs were analyzed for sensitivity by MTT
assay. Brcal*'* and Brcal”’~ MMECs were similarly sen-
sitive to doxorubicin (Figure 1la and Table 1; p = 0.3).
However, Brcal”’~ MMECs were more sensitive than
Brcal*’* MMECs to all of the platinum agents (Figure
1b-d and Table 1), with the greatest difference being
observed for cisplatin. Specifically, loss of Brcal asso-
ciated with a 13-fold increase in sensitivity to cisplatin
(Figure 1b; p = 0.001).

Effect of Loss of Brcal on Sensitivity to Non-DNA
Damaging Agents

We next examined the effect of loss of Brcal on sensi-
tivity to non-DNA damaging drugs thought to be
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Table 1 IC5, Values for Chemotherapy Drugs
Brcal*’* MMECs Brcal” MMECs p-value

DNA-damaging Drugs (uM) (uM)

Doxorubicin 0.06 + 0.02 0.04 + 0.02 03
Cisplatin 08 £ 0.1 0.06 + 0.02 0.001**
Carboplatin 10+ 4 6+2 0.03*
Oxaliplatin 541 2+ 0.04*
Taxanes

Paclitaxel 04 +£03 0.08 + 0.06 0.1
Docetaxel 0.001 £ 0.0009 0002 £ 0002 05

Antimetabolites
5-FU 08 +05
0.05 £ 0.02

4+09
0.002 £ 0.

0.004**
0.02*

Gemcitabine

**Highly statistically significant (p < 0.01)
*Statistically significant (p < 0.05)

analyzed for cellular sensitivity to (a) doxorubicin (b) cisplatin (c) carboplatin or (d) oxaliplatin by MTT assay. Each data point represents the
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independent of DNA repair function. Brcal*'* and
Brcal”’” MMECs were treated with increasing concen-
trations of taxanes (paclitaxel or docetaxel) or antimeta-
bolites (5-FU or gemcitabine), and evaluated for cellular
sensitivity by MTT assay. We found that Brcal*’* and
Brcal’” MMECs were similarly sensitive to both pacli-
taxel (Figure 2a; p = 0.1) and docetaxel (Figure 2b; p =
0.5). Sensitivity to the antimetabolites, on the other
hand, produced contrasting results. Compared to Brcal
*/* MMECs, Brcal”’~ MMECs were 5-fold less sensitive
to 5-FU (Figure 2¢; p = 0.004), but 27-fold more sensi-
tive to gemcitabine (Figure 2d; p = 0.02). Table 1 sum-
marizes these data. Interestingly, loss of Brcal
associated with cellular sensitivity to gemcitabine, which
unlike the taxanes and 5-FU, is not currently used
among standard first lines of therapy for breast cancer.
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Combination Therapy in Brcal** and Brcal”~ MMECs

Our data has indicated that loss of Brcal produced the
greatest sensitivity to cisplatin (Figure 1b) and to gem-
citabine (Figure 2d). Therefore, we next assessed the
effect of these drugs used in combination by isobolo-
gram analysis and found that there was a synergistic
effect between cisplatin and gemcitabine in both
Brcal™* and Brcal”’~ MMECs, but that the concentra-
tions required to produce the synergistic effect in
Brcal”’” MMECs were much lower than those needed
for Brcal™* MMECs (Figure 3). The combination
index (CI) for Breal*'* and Brcal”’~ MMECs were 0.01
and 0.05, respectively, where CI < 1 is synergism, CI =
1 is additive, and CI > 1 is antagonism. Therefore,
these data confirmed synergism between cisplatin and
gemcitabine.
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Figure 2 Effect of Brcal-deficiency on Sensitivity to Non-DNA Damaging Agents. Brcal*’* (black circle) and Brcal” (white square) cells
were analyzed for cellular sensitivity to taxanes, paclitaxel (a) or docetaxel (b), and to antimetabolites, 5-FU (c) or gemcitabine (d) by MTT assay.
Each data point represents the average of triplicate readings + S.D. Graphs are representative of at least three independent experiments.
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Figure 3 Sensitivity to the Combination of Cisplatin and Gemcitabine. Brcal** (a) and Brcal”” (b) MMECs were treated with cisplatin and
gemcitabine either alone or in combination and analyzed for sensitivity by MTT assay. The ICso values determined from treatment with cisplatin
and gemcitabine alone were plotted as axial points (black circles) on a Cartesian plot to generate a line of additivity. The ICs, values for each
combination of cisplatin and gemcitabine were then plotted as data points (black squares). Data points above the line of additivity represent an
antagonistic effect, data points on the line of additivity represent an additive effect, and data points below the line additivity represent a
synergistic effect. Data are representative of at least three independent experiments.
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Effect of Loss of Brcal on NER

Given that cisplatin produces lesions that are repaired
by NER, we next examined the functionality of the NER
pathway in Brcal™* and Brcal’"MMECs. Using an
assay for GGR that measures the removal of UV-
induced DNA lesions (CPDs and 6-4PPs), we found that
repair of CPDs 24 hrs after UV irradiation decreased
from 22 + 2% in Brcal*’* MMECs to 12 + 2% in
Brcal”’” MMECs (Figure 4a; p = 0.025). No difference
was observed for 6-4PPs; both cell lines repaired nearly
100% of these adducts by 24 hrs (data not shown). Ana-
lysis of TCR showed no difference between Brcal®'*
and Brcal”~ MMECs with greater than 70% repair of
CPDs in the transcribed strand of the mouse dhfr gene
being observed at 24 hours (data not shown).

To investigate the biological consequence of the differ-
ent abilities in GGR between Brcal** and Brcal'
MMECs, we examined cell survival after UV irradiation.
As shown in Figure 4b, cell viability decreased in a
dose-response manner in both Brcal™* and Brcal
MMEC:s following exposure to increasing amounts of
UV irradiation. However, Brcal”’~ MMECs displayed a
3-fold increase in sensitivity to UV irradiation relative to
that of Breal™* MMECs (p = 0.029).

To further explore the GGR defect in Brcal’~ MMECs,
we investigated whether loss of Brcal may affect the
expression of NER genes. We and others have shown
that BRCAI regulates the expression of human DDB2
and XPC [13,35], and the products of these genes are
required for efficient GGR of CPDs in human cells [36].

Therefore, we evaluated the expression of Ddb2 and Xpc
in Brcal*’* and Brcal’~ MMECs by RT-qPCR under the
same conditions as those used for the GGR assay. When
compared to Brcal*’* MMECs, Brcal’~ MMECs showed
a statistically significant decrease in UV-induced expres-
sion of Xpc mRNA (p = 0.04) but not of Ddb2 mRNA (p
= 0.8) (Figure 4c and data not shown).

We next examined the effect of loss of Brcal on drug-
induced expression of Xpc. Following treatment with
untreated control, 0.1 pM cisplatin, or 0.01 uM gemcita-
bine for 24 hours, we analyzed levels of Xpc mRNA by
RT-qPCR in Brcal™" and Brcal’~ MMECs. Brecal
MMECs showed significantly less induction of Xpc mRNA
following cisplatin treatment compared to Brcal*'*
MMECs (p = 0.009; Figure 4d), whereas both Brcal*'*
and Brcal”’~ MMECs showed no significant increase in
Xpc mRNA expression following treatment with gemcita-
bine (p = 0.6; Figure 4d). Taken together, these data sug-
gest that the increase in sensitivity to platinum agents
observed due to the loss of Brcal expression may be
attributed in part to an attenuation of transcriptional regu-
lation of Xpc, a DNA damage recognition gene, and a sub-
sequent decrease in GGR function of the NER pathway.

Effect of Loss of Brcal on DNA Double-strand break
repair

Finally, due to the well-established role for BRCA1 in
DNA double-strand break repair, we examined the effect
of loss of Brcal on levels of DNA strand breaks follow-
ing treatment with certain drugs. Brcal™'* and Brcal™”



Alli et al. BMC Pharmacology 2011, 11:7 Page 7 of 12
http://www.biomedcentral.com/1471-2210/11/7

a b
25 -
. 10
< 207 <
= S 804
:l%' " E 60
L2 s
< 101 S
< = 401
e S
57 204
o[} T T T r | 0 —_— _—
5 10 15 20 25 10 100
Time (hours) UV-C (J/m?)
c - d
c 2,
O ~
7 S
m(g 86
<+ 5O
Z 90 o1 * %
X2 3o
ET 4 - E.E
OF ET
~ O(D
X &%
X
0 0 . .
Breal+/+ Breal—/— Cisplatin Gemcitabine
e 100 -
80 -
%
= 60 -
g m Untreated
o m Cisplatin
O 40 -
£ * % Gemcitabine
<Zt 20 m Doxorubicin
z _
X
0
Brcal+/+ Brcal-/-

Figure 4 Effect of Brcal-deficiency on NER and Double-strand DNA Break Repair. In (a), GGR of CPDs in Breal** (black circle) and Brcal””
(white square) cells was measured using an immunoslot blot assay. Cells were exposed to 10 J/m? UV-irradiation and collected at the indicated
times. DNA repair was expressed as a percentage relative to control. Data from triplicate DNA samples from three different biological
experiments were expressed as an average + SEM. In (b), sensitivity to UV-irradiation was determined by MTT assay for Brcal*’* (black circle)
and Brcal”” (white square) cells. In (c), damage-induced expression of Xpc mRNA, an NER gene involved in DNA damage recognition, in Brcal
and Brcal”” cells was measured using RT-qPCR. Brcal™* and Brcal™ cells were exposed to 10 J/m? of UV and either harvested immediately
(control) or incubated in media and harvested 24 h later. In (d), expression of Xoc mRNA following 24 hours of treatment with 0.1 uM cisplatin
or 001 uM gemcitabine in Brcal™* and Brcal” cells was measured using RT-gPCR. Data were calculated relative to the untreated control and
expressed as the average of three experiments + SEM. In (e), DNA strand breaks were measured at 24 hours following treatment with 0.1 uM
cisplatin, 0.01 uM gemcitabine, or 0.1 uM doxorubicin in Brcal™* and Brcal” cells using the alkaline comet assay. Comet tails indicate DNA
damage. Unless indicated otherwise, data were expressed as an average of triplicate readings + S.D. **, p < 0.01; *, p < 0.05.

+/+




Alli et al. BMC Pharmacology 2011, 11:7
http://www.biomedcentral.com/1471-2210/11/7

MMECs were left untreated (control) or treated with 0.1
uM cisplatin, 0.01 pM gemcitabine, or 0.1 uM doxorubi-
cin, and then after 24 hours for repair, subjected to the
alkaline comet assay (Figure 4e). We observed similar
levels of DNA strand breaks following treatment with
cisplatin or gemcitabine compared to control in both
Brcal™* (p = 0.5 and p = 0.08, respectively) and
Brcal”’” MMECs (p = 0.4 and p = 0.6, respectively).
However, we found significantly greater levels of DNA
strand breaks following treatment with doxorubicin
compared to the untreated control in Breal”’~ MMECs
(p = 0.0004), but not in Brcal*’* MMECs (p = 0.4).

Discussion

Loss of BRCA1 function plays a role in the development
of a substantial number of breast cancers, including
more than 50% of hereditary cases due to germline
mutations [37] and up to 30% of sporadic cases through
mechanisms of epigenetic silencing [4]. BRCAI-asso-
ciated cancers are typically triple-negative in phenotype,
correlate with a poor clinical outcome [38-41], and are
in need of improved treatment options. BRCA1 func-
tions in DNA damage response pathways, cell-cycle con-
trol, chromatin remodeling, transcription regulation, and
various other cellular processes [42-45]. In this study,
we evaluated the cellular sensitivity to drugs that are
dependent and independent of DNA damage response
pathways and analyzed the corresponding DNA repair
status in Brcal*’* and Brcal’~ MMECs. We used an
isogenic cellular system to allow the direct comparison
of sensitivity to various drugs and found that among the
drugs used in this study, cisplatin and gemcitabine pro-
duced the greatest therapeutic benefit to Brcal-deficient
MMECs, and that when used in combination, produced
a synergistic effect. This sensitivity may be attributed in
part to defective NER, which is one of the DNA repair
pathways normally responsible for repairing DNA
adducts generated by cisplatin and is shown in this
study to be defective in Brcal-deficient MMECs.

Loss of Brcal associates with sensitivity to platinum-
based DNA-damaging agents. We found that the great-
est therapeutic advantage to Brcal-deficient MMECs
among the platinum agents to be with cisplatin, moreso
than carboplatin or oxaliplatin. Brcal’~ MMECs were
13-fold more sensitive to cisplatin than Brcal*'*
MMECs (Figure 1b). While all platinum agents have the
common ability to cross-link DNA, major differences
occur in their mechanisms of action and resistance and
in their stability (reviewed in [46-48]) that may explain
the greater sensitivity to cisplatin compared to other
members of the group. Consistent with our data, Sgagias
et al. reported cisplatin sensitivity in these Brcal-defi-
cient cells [23], and others have reported similar cispla-
tin sensitivity in other BRCA1-deficient cellular systems
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[15-20,49]. Platinum agents induce DNA adducts and
double-strand breaks that are typically repaired by NER
and homologous recombination (HR), respectively [50].
Loss of BRCAL1 is generally believed to associate with
cisplatin sensitivity due to compromised HR, resulting
in unrepairable DNA double strand breaks and subse-
quent cell death. Under our experimental conditions, we
observed no difference in the levels of DNA strand
breaks following cisplatin treatment in Brcal-wild-type
versus null cells (Figure 4e). However, cells derived from
the same Brcal mouse model as the MMECs that are
described in this study have been shown to display
genetic instability and sensitivity to agents that produce
double-strand breaks [34], suggesting that these cells,
like other BRCA1-deficient cells, display defective dou-
ble-strand break repair. Therefore, the conditions for
cisplatin treatment used in our experiments may have
produced platinum -DNA adducts moreso than DNA
double-strand breaks. We found that loss of Brcal
expression resulted in a defect in the GGR subpathway
of NER. Specifically, we demonstrated that Brcal-defi-
cient MMECs showed a reduced rate of GGR of CPDs
(Figure 4a), significantly increased sensitivity to UV-irra-
diation (Figure 4b), and loss of Xpc transcriptional
induction after DNA damage (Figure 4c). Similarly,
Brcal-deficient MMECs exhibited sensitivity to plati-
num agents (Figure 1b-d) and a loss of Xpc transcrip-
tional induction after cisplatin treatment (Figure 4d).
These data are consistent with human studies showing
that overexpression of human BRCA1 enhances GGR
through transcriptional regulation of NER genes, XPC,
DDB2, and GADD45 [13]. Therefore, loss of BRCA1
may also result in cisplatin sensitivity due to compro-
mised NER. In support of this idea, both HR and NER
have been described as mechanisms of resistance to cis-
platin [50,51]. Furthermore, these same Brcal-deficient
MMECs were more sensitive to inhibitors of PARP, a
BER enzyme, and MMS, which produces lesions
repaired by BER, and showed an aberrant response to
oxidative stress that is consistent with a defect in BER
[12,23]. Taken together, we propose that multiple repair
pathways are likely to be responsible for BRCA1-
mediated sensitivity to platinum agents, including NER
and HR.

In contrast to cisplatin, loss of Brcal did not affect
sensitivity to the DNA-damaging agent doxorubicin. We
found no difference in sensitivity between Brcal*’* and
Brcal”’” MMECs (Figure 1a). Doxorubicin intercalates
within DNA and inhibits topoisomerase II, resulting in
DNA double-strand breaks. Given that the response to
doxorubicin is dependent in part on HR for the repair
of double-strand breaks and the response to platinum
agents is dependent on both HR and NER, our finding
that Brcal-deficient cells were defective in the GGR
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subpathway of NER may explain the difference in sensi-
tivity between these two types of DNA damaging agents.
Furthermore, the lack of effect on sensitivity to doxoru-
bicin in Brcal-deficient MMECs may be attributed to
the fact that topoisomerase II unwinds DNA for tran-
scription, and we found that Brcal-deficient cells were
proficient in TCR (data not shown). We observed
greater levels of DNA strand breaks in Brcal”’~ MMECs
compared to Brcal*’* MMECs at 24 hours following
doxorubicin treatment (Figure 4e). Therefore, the inter-
calating activity, which inhibits DNA replication and
synthesis, may dominate over the topoisomerase II inhi-
biting activity of doxorubicin, and thus, eliminate the
specificity for cell killing of Brcal-deficient cells. In sup-
port of this idea, Treszezamsky et al. found that due to
compromised HR, BRCA1-deficent cells were sensitive
to etoposide [52], which is a topoisomerase II poison
but not a DNA intercalator. Therefore, both activities of
doxorubicin may contribute to the comparable sensitiv-
ity for doxorubicin in Breal*’* and Brcal”’~ MMECs.
Loss of Brcal exhibits a variable response to antimeta-
bolites. Brcal’~ MMECs were 27-fold more sensitive to
gemcitabine and 5-fold less sensitive to 5-FU than Brcal
*/* MMECs. Interestingly, triple-negative breast cancers,
which share a similar molecular and histopathological
profile with BRCAI-mutated breast cancers, have also
been found to be sensitive to gemcitabine [49,53]. Con-
sistent with the mechanism of gemcitabine being inde-
pendent of DNA repair, the increase in sensitivity to
gemcitabine due to the loss of Brcal expression was not
a result of defective NER (Figure 4d) or double-strand
break repair (Figure 4e). However, gemcitabine has been
shown to induce H2AX phosphorylation and Rad51
nuclear foci formation, i.e. markers of DNA double
strand breaks, at stalled replication forks in triple-nega-
tive breast cancer cells [49,54]. Therefore, it is possible
that our experimental conditions for gemcitabine treat-
ment did not produce significant double strand breaks.
Both gemcitabine and 5-FU function as nucleoside ana-
logs that inhibit DNA replication. However, gemcitabine
also inhibits ribonucleotide reductase. This additional
action of gemcitabine is likely to be responsible for the
drastically different effects between the two drugs. For
example, ribonucleotide reductase plays a role in main-
taining the supply of ANTPS at sites of DNA damage to
allow for efficient repair [55,56]. Gemcitabine-mediated
inhibition of ribonucleotide reductase may preclude
mechanisms of repair (other than NER or double-strand
DNA break repair) from compensating in the absence of
BRCA1-mediated DNA repair. Alternatively, functions
other than DNA repair may determine gemcitabine sen-
sitivity or 5-FU resistance in Brcal-deficient cells. These
functions may be attributed to the RING-finger domain
at the N-terminus of BRCAI that functions in
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transcription regulation and/or the BRCT domain at the
C-terminus of BRCAI that functions in various pro-
cesses through protein-protein interactions [43,44].

Loss of Brcal does not affect the sensitivity to taxanes.
Current reports on the involvement of BRCAL1 in deter-
mining sensitivity to this class of drug are conflicting
[41,57,58], and these data may be dependent on cell
type or differences among model systems. Interestingly,
a similar study using transformed Brcal*'* and Brcal™
mouse ovarian epithelial cell lines also showed no differ-
ence in sensitivity to paclitaxel [59]. Regardless, further
studies are warranted to determine the exact role that
BRCAL1 and related proteins play in paclitaxel sensitivity
(or resistance).

Cisplatin and gemcitabine exert a drastic synergistic
effect on cellular sensitivity in the absence of BRCAI.
We found that both Brcal*'* and Brcal”’~ MMECs
showed synergy between the two drugs (Figure 3), and
we and others have reported similar synergy in other
cell types [49,53,60-63]. In fact, the cisplatin-gemcitabine
combination is currently FDA-approved for use in the
treatment of some non-small cell lung cancers. The
relatively low concentrations that produced the indivi-
dual drug sensitivities combined with the synergism in
Brcal”’~ MMECs provides strong preclinical evidence for
the cisplatin-gemcitabine combination in the treatment
of BRCA1-associated breast cancers. While gemcitabine
has not been shown to directly induce DNA damage
(Figure 4e and [64]), nor has it shown dependency on
DNA repair systems [65], it has been shown to inhibit
repair of cisplatin-induced DNA damage [61,66,67], and
this may contribute to the synergistic effect observed in
Brcal-deficient cell lines. DNA repair is a mechanism of
resistance to cisplatin [51]. Therefore, inhibition of
repair, such as that due to gemcitabine, may produce
sensitivity to cisplatin.

This study opens the door for the identification of
other existing chemotherapeutic agents that may also be
selectively sensitive to BRCA1-deficient cells. Other
drugs may potentially be identified in a larger screen
such as that described for BRCA2-deficient cells [68].

Due to the early success of PARP inhibitors, such as
olaparib, in BRCA1-deficient tumors [10], it is possible
that combination regimens including cisplatin and/or
gemcitabine may be even more effective. In fact, we
have recently initiated a Phase II clinical trial for gemci-
tabine, carboplatin and PARP inhibitor iniparib (BSI-
201) in the neoadjuvant treatment of BRCA1 or BRCA2
mutated and triple-negative breast cancer.

Clinical evidence is emerging that BRCA1- associated
breast cancers are particularly sensitive to platinum agents.
A recent study using registry data from Poland identified
102 women who carried a BRCAI founder mutation and
had undergone neoadjuvant chemotherapy for breast
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cancer [69]. Remarkably, 83% (10 of 12) of those treated
with cisplatin achieved a pathological complete response,
compared to more typical rates of 22% with doxorubicin,
cyclophosphamide and 5-FU based regimens. A report
from the Dana-Farber Cancer Institute documented a 22%
pathological complete response with single-agent cisplatin
in the neoadjuvant setting for 28 women with early stage
triple-negative breast cancer; only 2 patients were known
BRCA1I mutation carriers, though both achieved a com-
plete response [70]. At this point, nothing is known
regarding gemcitabine as a selective targeted agent in
BRCAI mutant breast cancers.

Conclusions

Doxorubicin, 5-FU, paclitaxel, and docetaxel are all cur-
rently used in breast cancer therapy. On the other hand,
cisplatin and gemcitabine are not included in first line
regimens for breast cancer, yet we found that they show
therapeutic effectiveness in Brcal-deficient MMEC:s.
Taken together, our data suggest a novel targeted
approach to treating BRCAI-mutated or other DNA
repair-deficient breast cancers to include gemcitabine
and cisplatin. Based upon these results, clinical trials
have been initiated to examine the role of platinum
drugs with gemcitabine in BRCAI- mutant and triple-
negative breast cancers [71].
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