BMC Pharmacology Poster presentation **Open Access** ## Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension Joachim Mittendorf¹, Stefan Weigand^{1,4}, Cristina Alonso-Alija¹, Erwin Bischoff², Achim Feurer^{1,5}, Michael Gerisch³, Armin Kern³, Andreas Knorr², Dieter Lang³, Klaus Muenter², Martin Radtke³, Hartmut Schirok¹, Karl-Heinz Schlemmer³, Elke Stahl³, Alexander Straub¹, Frank Wunder² and Johannes-Peter Stasch*² Address: ¹Bayer Schering Pharma AG, Medicinal Chemistry Wuppertal, Pharma Research Center, 42096 Wuppertal, Germany, ²Bayer Schering Pharma AG, Cardiovascular Research, Pharma Research Center, 42096 Wuppertal, Germany, ³Bayer Schering Pharma AG, DMPK, Pharma Research Center, 42096 Wuppertal, Germany, ⁴Roche, Nonnenwald 2, 82377 Penzberg, Germany and ⁵Santhera Pharmaceuticals Ltd., Hammerstrasse 47, 4410 Liestal, Switzerland Email: Johannes-Peter Stasch* - joachim.mittendorf@bayerhealthcare.com from 4th International Conference of cGMP Generators, Effectors and Therapeutic Implications Regensburg, Germany. 19–21 June 2009 Published: 11 August 2009 BMC Pharmacology 2009, 9(Suppl 1):P52 doi:10.1186/1471-2210-9-S1-P52 This abstract is available from: http://www.biomedcentral.com/1471-2210/9/S1/P52 © 2009 Mittendorf et al; licensee BioMed Central Ltd. Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impairments of the NO-sGC signaling pathway have been implicated in the pathogenesis of cardiovascular and other diseases. Direct stimulation of sGC represents a promising therapeutic strategy particularly for the treatment of pulmonary hypertension (PH), a disabling disease associated with a poor prognosis. Previous sGC stimulators such as the pyrazolopyridines BAY 41-2272 and BAY41-8543 demonstrated beneficial effects in experimental models of PH, but were associated with unfavorable drug metabolism and pharmacokinetic (DMPK) properties. Herein we disclose an extended SAR exploration of this compound class to address these issues. Our efforts led to the identification of the potent sGC stimulator riociguat, which exhibits an improved DMPK profile and exerts strong effects on pulmonary hemodynamics and exercise capacity in patients with PH. Riociguat (BAY 63-2521) is currently being investigated in phase III clinical trials for the oral treatment of PH. ^{*} Corresponding author