MEETING ABSTRACT

Open Access

Stability monitoring of some acetylcholinesterase reactivating drugs

Nazila Ram¹, Péter Szegi², Kamil Kuča³, Farzad Hashemi², Kornélia Tekes^{2*}

From 17th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Hungarian Society of Experimental and Clinical Pharmacology (MFT) Innsbruck, Austria. 29-30 September 2011

Background

Widespread use of organophosphorous compounds (OPs) in agriculture and as nerve agents as well as a lack of clinically effective antidotes initiated the synthesis of new pyridinium bis-aldoximes (K-compounds) with high potency in reactivating acetylcholinesterase irreversibly inhibited by OPs [1,2]. We aimed to optimize an HPLC method sensitive enough to determine K-compounds from different biological matrices (blood, brain and cerebrospinal fluid) [3,4].

Methods

Samples of biological origin needed proper clean-up. An RP-HPLC method using either UV and amperometric detector was used following separation on a Zorbax Rx-C18 octadecyl silica column with a mobile phase of phosphate buffer with 20% acetonitrile (pH 3.7). 1-Octane sulphonic acid sodium salt (OSA) was used as ion-pairing agent. Calculation of theoretical plate number, asymmetry of peaks, limit of quantitation (LOQ), lower limit of detection (LLOD) and determination of pH, temperature and OSA concentration dependence was done.

Results

Elution characteristics of bis-pyridinium mono-aldoximes were depending on the OSA concentration, however, to a lesser extent than the bis-pyridinium bis-aldoximes. A double bond in the alkyl chain decreased the dependence from the ion-pairing agent concentration only to a minor extent. When the samples were kept at a pH under 1.5 a peak of degradation product was generated. The time course of degradation in an acidic milieu was calculated.

²Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary

Full list of author information is available at the end of the article

© 2011 Ram et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conclusions

Appropriate clean-up, optimal concentration of the ionpairing agent and a well-selected mode of detection are the key factors for optimal determinations. We point out decomposition of pyridinium aldoximes at acidic pH.

Author details

¹Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary. ²Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary. ³Department of Toxicology, University of Defence, 500 01 Hradec Králové, Czech Republic.

Published: 5 September 2011

References

- Kuča K, Cabal J: In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes – K027, K005, K033 and K048. Cent Eur J Public Health 2004, 12(Suppl):S59-S61.
- Petroianu GA, Nurulain SM, Nagelkerke N, Shafiullah M, Kassa J, Kuča K: Five oximes (K-27, K-48, obidoxime, HI-6 and trimedoxime) in comparison with pralidoxime: survival in rats exposed to methyl-paraoxon. J Appl Toxicol 2007, 27:453-457.
- 3. Kalász H, Fürész J, Tekes K: Monitoring the pharmacokinetics of
- pyridinium aldoximes in the body. Mini Rev Med Chem 2009, 9:448-462.
 Szegi P, Kalász H, Laufer R, Kuča K, Tekes K: Pyridinium aldoxime analysis by HPLC: the method for studies on pharmacokinetics and stability. Anal Bioanal Chem 2010, 397:579-586.

doi:10.1186/1471-2210-11-S2-A52

Cite this article as: Ram *et al.*: **Stability monitoring of some acetylcholinesterase reactivating drugs.** *BMC Pharmacology* 2011 **11** (Suppl 2):A52.

^{*} Correspondence: drtekes@gmail.com