MEETING ABSTRACT

Open Access

Amphetamine actions rely on the availability of phosphatidylinositol-4,5-bisphosphate

Florian Buchmayer¹, Klaus Schicker¹, Gerald Stübiger¹, Peter J Hamilton², Petra Geier¹, Andreas Jurik³, René Weissensteiner³, Thomas Steinkellner¹, Heinrich J Matthies², Therese Montgomery¹, Marie-Therese Winkler¹, Jae-Won Yang¹, Marion Holy¹, Gerhard F Ecker³, Aurelio Galli², Valery Bochkov¹, Stefan Boehm¹, Harald H Sitte^{1*}

From 17th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Hungarian Society of Experimental and Clinical Pharmacology (MFT) Innsbruck, Austria. 29-30 September 2011

Background

Neuronal functions, such as excitability or endo- and exocytosis, require phosphatidylinositol-4,5-bisphosphate (PIP₂) since ion channels and other proteins involved in these processes are regulated by PIP₂. Monoamine transporters control neurotransmission by removing monoamines from the extracellular space. They also display channel properties, but their regulation by PIP₂ has not been reported. The psychostimulant amphetamine acts on monoamine transporters to stimulate transportermediated currents and efflux and thereby increases the levels of extracellular monoamines.

Methods and results

Direct or receptor-mediated activation of phospholipase C (PLC) reduced membrane PIP₂ and amphetamine-evoked currents through recombinant serotonin transporters; extracellular application of a PIP₂-scavenging peptide mimicked this effect. PLC activation also diminished amphetamine-induced reverse transport without altering transmitter uptake. Inhibition of reverse transport by PLC activation was also observed in brain slices and with recombinant dopamine and noradrenaline, but not GABA transporters; rises in intracellular Ca²⁺ or activation of protein kinase C were not involved in these effects.

Conclusions

These data demonstrate for the first time PIP_2 dependence of reverse transport and current in monoamine transporters.

* Correspondence: harald.sitte@meduniwien.ac.at

¹Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria

Full list of author information is available at the end of the article

Acknowledgements

Supported by FWF (P22893-B11, P17611, SFB3502, SFB3506), and a grant from NIH DA13975.

Author details

¹Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. ²Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA. ³Department of Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria.

Published: 5 September 2011

doi:10.1186/1471-2210-11-S2-A19

Cite this article as: Buchmayer *et al*.: **Amphetamine actions rely on the availability of phosphatidylinositol-4,5-bisphosphate**. *BMC Pharmacology* 2011 **11**(Suppl 2):A19.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2011 Buchmayer et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.