ORAL PRESENTATION

Open Access

A novel pathway of cGMP

Michaela Kuhn^{1*}, Beatrice Dankworth¹, Martin Kruse², Michael Hartmann¹, Viacheslav O Nikolaev³, Katharina Völker¹, Birgit Gaßner¹, Robert Feil⁴, Marc Freichel⁵, Olaf Pongs², Michael Klaiber¹

From 5th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Halle, Germany. 24-26 June 2011

Background

Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A to exert its diverse functions. This involves a cGMPdependent signaling pathway preventing pathological $[Ca^{2+}]_i$ raises in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization.

Results

Here we show that in this situation ANP binding to GC-A stimulates a novel cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca²⁺ levels ($[Ca^{2+}_{i}]$). This pathway involves the activation of TRPC3/C6 Ca²⁺ channels (transient receptor potential canonical channel 3/6) by GC-A which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting TRPC3/C6-mediated Ca²⁺ entry then stimulates Calmodulin Kinase II (CaMKII) to phosphorylate L-type Ca²⁺ channels leading to increased L-type Ca²⁺ channel mediated Ca²⁺ current and a rise in intracellular Ca²⁺ levels.

Conclusion

These observations reveal a dual role of the ANP/GC-A signaling pathway in the regulation of cardiac myocyte Ca^{2+}_{i} -homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca^{2+}_{i} -enhancing action of hypertrophic factors such as Angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions, when GC-A is desensitized by high ANP levels. The

* Correspondence: michaela.kuhn@mail.uni-wuerzburg.de

Full list of author information is available at the end of the article

concomitant rise in $[Ca^{2+}{}_i]$ is likely to increase the propensity to cardiac hypertrophy and arrhythmias.

Author details

¹Institute of Physiology, University of Würzburg, Germany. ²Institut für Neurale Signalverarbeitung, Universität Hamburg, Germany. ³Institute of Pharmacology, University of Würzburg, Germany. ⁴Interfakultäres Institut für Biochemie, Universität Tübingen, Germany. ⁵Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Hamburg, Germany.

Published: 1 August 2011

doi:10.1186/1471-2210-11-S1-O28 Cite this article as: Kuhn *et al*:: A novel pathway of cGMP. *BMC Pharmacology* 2011 11(Suppl 1):O28.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2011 Kuhn et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Institute of Physiology, University of Würzburg, Germany