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Abstract

MAO B inhibitor.

conditions or about 2 mV after TBS).

excitatory modulations at low concentrations.

disease or stroke.

Background: Rasagiline, a new drug developed to treat Parkinson’s disease, is known to inhibit monoamine
oxidase B. However, its metabolite R-(-)-aminoindan does not show this kind of activity. The present series of in
vitro experiments using the rat hippocampal slice preparation deals with effects of both compounds on the
pyramidal cell response after electric stimulation of the Schaffer Collaterals in comparison to selegiline, another

Method: Stimulation of the Schaffer Collaterals by single stimuli (SS) or theta burst stimulation (TBS) resulted in
stable responses of pyramidal cells measured as population spike amplitude (about 1 mV under control SS

Results: During the first series, this response was attenuated in the presence of rasagiline and aminoindan-to a
lesser degree of selegiline-in a concentration dependent manner (5-50 uM) after single stimuli as well as under
TBS. During oxygen/glucose deprivation for 10 min the amplitude of the population spike breaks down by 75%.
The presence of rasagiline and aminoindan, but rarely the presence of selegiline, prevented this break down.
Following glutamate receptor mediated enhancements of neuronal transmission in a second series of experiments
very clear differences could be observed in comparison to the action of selegiline: NMDA receptor, AMPA receptor
as well as metabotropic glutamate receptor mediated increases of transmission were concentration dependently
(0,3 - 2 uM) antagonized by rasagiline and aminoindan, but not by selegiline. On the opposite, only selegiline
attenuated kainate receptor mediated increases of excitability. Thus, both monoamino oxidase (MAQO) B inhibitors
show attenuation of glutamatergic transmission in the hippocampus but interfere with different receptor mediated

Conclusions: Since aminoindan does not induce MAQO B inhibition, these effects must be regarded as being
independent from MAO B inhibition. The results provide strong evidence for a neuroprotective activity of rasagiline
and aminoindan in concert with an extended clinical indication into the direction of other diseases like Alzheimer’s

Background

Rasagiline (N-propargyl-1-(R)-aminoindan) and selegiline
are drugs prescribed for the treatment of Parkinson’s dis-
ease. Both are believed to act by inhibition of monoamine
oxidase B (MAO B). However, both are metabolized in a
different way: rasagiline gives rise to aminoindan, a com-
pound reported to have neuroprotective capabilities of its
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own, whereas selegiline gives rise to the neurotoxic meta-
bolite methamphetamine [1,2]. Similar electropharmaco-
grams obtained by quantitative brain field potential
analysis were obtained from freely moving rats in the
presence of rasagiline and its metabolite aminoindan (not
inhibiting monoamine oxidase B). Selegiline-on the other
hand-produced a time dependent biphasic action pre-
sumably due to the action of its active metabolites [3].
Available evidence suggests an additional mechanism of
action for these drugs independently from MAO B
inhibition.
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For example, a neuroprotective action unrelated to
MAO inhibition has been reported by [4] for rasagiline
as well as for its major metabolite 1-(R)-aminoindan [5].
For review of neuroprotective effects of rasagiline and
aminoindan see [6]. But again, no final mechanism has
been reported to explain the proposed neuroprotective
action. There is solid evidence of an involvement of glu-
tamatergic transmission in neuroprotection. This calls
for an experimental setup to dissect the possible inter-
ference of these compounds within the glutamatergic
system. To our knowledge, no neurophysiological tech-
niques have been applied up to now to characterize the
effects of these compounds on glutamatergic transmis-
sion in the hippocampus. This model should be suitable
since the communication between Schaffer-Collaterals
and the hippocampal pyramidal cells takes place by
using glutamate as transmitter.

The hippocampus slice preparation is a validated
model for direct analysis of interaction of substances
with living neuronal tissue [7,8]. Due to the preservation
of the three dimensional structure of the hippocampus,
drug effects on the excitability of pyramidal cells can be
studied in a unique manner. Electric stimulation of
Schaffer Collaterals leads to release of glutamate result-
ing in excitation of the postsynaptic pyramidal cells. The
result of the electrical stimulation can be recorded as
a so-called population spike (pop-spike). The amplitude
of the resulting population spike represents the number
of recruited pyramidal cells and relates to the extent of
glutamatergic transmission. The advantage of the model
not only consists in the possibility of physiological
recording in vitro during 8 hours but also to modify the
excitability of the system in order to create pathophysio-
logical conditions like transient oxygen and glucose
deprivation (OGD) [9].

The first part of the present investigation aimed at the
characterization of the effects of rasagiline and its meta-
bolite aminoindan in comparison to selegiline on
glutamatergic transmission within a physiological envir-
onment and under pathophysiological conditions. The
principle of the second part of the investigation was to
use the enhancement of the pyramidal cell response
(increased amplitudes of population spike) in the pre-
sence of highly specific and selective agonists of differ-
ent glutamate receptors as a challenge. Accordingly,
these responses were followed in the presence of several
concentrations of rasagiline, aminoindan and selegiline.
This approach should reveal great similarities between
rasagiline and aminoindan on one side and a great dif-
ference to the action of selegiline on the other side.

Methods
Hippocampus slices were obtained from 43 adult male
Sprague-Dawley rats (Charles River Wiga, Sulzbach,
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Germany). Rats were kept under a reversed day/night
cycle for 2 weeks prior start of the experiments, to allow
recording of in vitro activity from slices during the
active phase of their circadian rhythm [10,11]. Animals
were exsanguinated under ether anaesthesia, the brain
was removed and the hippocampal formation was iso-
lated under microstereoscopic sight. The midsection of
the hippocampus was fixed to the table of a vibrating
microtome (Rhema Labortechnik, Hotheim, Germany)
using a cyanoacrylate adhesive, submerged in chilled
bicarbonate-buffered saline (artificial cerebrospinal fluid
(ACSF): NaCl: 124 mM, KCI: 5 mM, CaCl2: 2 mM,
MgSO4: 2 mM, NaHCO3: 26 mM, glucose: 10 mM, and
cut into slices of 400 um thickness. All slices were pre-
incubated for at least 1 h in Carbogen saturated ACSF
(pH 7.4) in a pre-chamber before use [12].

During the experiment the slices were held and trea-
ted in a special superfusion chamber (List Electronics,
Darmstadt, Germany) according to [13] at 35°C [14].
Five slices per rat were used. The preparation was
superfused ACSF at 220 ml/h. Electrical stimulation
(200 pA constant current pulses of 200 ps pulse width)
of the Schaffer Collaterals within the CA2 area and
recording of extracellular field potentials from the pyra-
midal cell layer of CA1 [12] was performed according to
conventional electrophysiological methods using the
“Labteam” Computer system “NeuroTool” software
package (MediSyst GmbH, Linden, Germany). Measure-
ments were performed at 10 min intervals in order to
avoid potentiation mechanisms after single stimuli (first
recording at 10 min is discarded for stability purposes).
Four stimulations-each 20 s apart-were averaged for
each time point. After averaging the last three of four
responses to single stimuli (SS) to give one value, poten-
tiation was induced by applying a theta burst type pat-
tern (TBS; [7]). The mean amplitude of three signals
20 seconds apart were averaged to give the mean of
absolute voltage values (microvolt) + standard error of
the mean for each experimental condition (single stimu-
lus or theta burst stimulation). Electrical stimulation of
the Schaffer Collaterals within the C2 area with single
stimuli resulted in stable responses of the pyramidal
cells in form of population spikes with an amplitude of
about 1 mV and about 2 mV after theta burst stimula-
tion (TBS) (representative example is given in Figure 1).
Oxygen and Glucose deprivation (OGD) was performed
in analogy to [15] by shutting off oxygen and glucose
for 10 minutes. In this case glucose was replaced by
sucrose.

For stimulation of glutamate receptors (NMDA, AMPA,
Kainate and metabotropic receptor) four agonists were
used, respectively: trans-1-Aminocyclobutan-1,3-dicar-
boxylic acid (ACBD; [16]), (S)-(-)-o.-Amino-5-fluoro-3,4-
dihydro-2,4-dioxo-1(2H)-pyrimidinepropanoic acid
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Figure 1 Documentation of original signals showing the effects
of using single stimuli (SS) or theta burst stimulation (TBS) in
control slices (left panel) or in the presence of rasagiline (right
panel) diluted in artificial cerebro-spinal fluid (ASCF). The
amplitude is calculated from baseline to the down reflection of the
signal (shadowed). Stimulus artefacts are omitted for the sake of
clarity. Scales: Time is given in milliseconds (ms), amplitude in
millivolt (mV).

(S-Fluorowillardiine; [17-19]), (RS)-2-Amino-3-(3-
hydroxy-5-tert-butyliosxazol-4-yl)propanoic acid (ATPA;
[20-23]) and (+)-1-Aminocyclopentane-trans-1,3-dicar-
boxylic acid (t-ACPD; [24-26]). All agonists were tested in
pilot experiments in order to detect a concentration lead-
ing to strong increases of population spike amplitude in
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the presence of single stimuli (SS) and theta burst stimula-
tion (TBS). Origin of the chemicals is given in Table 1.
The allowance to keep animals for this purpose was
obtained from governmental authorities, dated 2009-09-01
under the document Nr. 0200052529. Experiments were
performed in accordance with the German Animal Protec-
tion Law.

Results

a) Neurophysiological evidence for neuroprotective
effects

Using single stimulus administration rasagiline and - to
a lesser degree-selegiline attenuated the pyramidal cells
response significantly at a concentration of 30 puM. In
the presence of aminoindan, however, significant
attenuation was observed already at 15 uM. At a con-
centration of 50 pM rasagiline and aminoindan reduced
the amplitude by about 60%, selegiline by about 40%.
The course of the concentration dependence is given in
Figure 2 for all three compounds. Under the condition
of theta burst stimuli, rasagiline was able to reduce the
signal amplitude significantly at 10 uM, whereas the
effect of selegiline reached statistical significance at a
concentration of 15 pM. The effects of aminoindan
became statistically significant already at a concentration
of 7.5 uM. Thus, in the presence of rasagiline, aminoin-
dan and selegiline a concentration dependent decrease
of the amplitudes of the population spike could be
observed during single shock stimulation as well as dur-
ing theta burst stimulation. Effects of selegiline were
weakest (Figure 2).

In order to proof, that this attenuation of glutamatergic
transmission could be related to neuroprotective features
of the compounds, a pathophysiological situation was
created in slices by turning off oxygen and glucose for
10 minutes. This procedure succeeded in a breakdown of
the signal amplitudes after electrical single stimuli by
about 75%. This breakdown was nearly totally prevented
(p < 0.05) by the presence of a concentration of 5 uM
rasagiline or aminoindan in the superfusion medium but
rarely by selegiline (p < 0.1). Time courses of the

Table 1 Compounds used

rasagiline CH.B: 255400204 TEVA Pharma GmbH

selegiline CH.B: 0405BG/01 BIO TREND
aminoindan CH.B:087K4619 Sigma-Aldrich Chemie

GmbH

trans-ACBD CH.B: 0048BN/01 BIO TREND
trans-ACPD CH.B: 0053BN/01 BIO TREND

(S)-() S- CH.B: 9A/36714 BIO TREND

Fluorowillardiine
(RS)-ATPA CH.B: 0096 BN/01 BIO TREND

Origin of chemical compounds used for this experimental series.
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Figure 2 Concentration dependent effects of rasagiline, aminoindan and selegiline on pyramidal cell activity in terms of changes of
population spike amplitude. Results from single slices as obtained after single stimuli (SS) and after theta burst stimuli (TBS). Data are given in
microvolt for a mean of four slices and standard error of the mean. Stars indicate statistical significance of p < 0.05 in comparison to control.
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experiments are depicted in Figure 3. This effect was still
visible but not statistically significant from control at
time period 60 and 70 minutes after start of the experi-
ment. Thus, rasagiline and aminoindan showed a clearly
better neuroprotective effect than selegiline in this model.

b) Functional interference with NMDA receptor activation
In order to test a possible interference of rasagiline, ami-
noindan or selegiline with NMDA receptor activation,
glutamatergic neurotransmission was modulated by
ACBD, a very potent and selective NMDA receptor ago-
nist. A concentration of 50 nM induced a significant
enhancement of the population spike amplitude. Under
the condition of single stimuli increase of the amplitude
from 1106 to 1940 pV (176% of control value) could be
observed (Figure 4). In the presence of rasagiline the
amplitude remained at control value (changing from
1102 to 1185 V). Statistically significant differences to

the ACBD induced increase were already observed with
a concentration of 1 pM of rasagiline (p < 0.01).

Similar results were obtained in the presence of theta
burst stimulation. Presence of ACBD in the superfusion
medium increased the amplitude to 3173 pV. Rasagiline
at a concentration of 5 uM attenuated the ACBD-
induced signal down to 2074 uV (about control value).
A statistically significant difference to ACBD-induced
values was obtained at the very low concentration of
300 nM of rasagiline and aminoindan (p < 0.01). Thus,
a concentration dependent attenuation of NMDA recep-
tor induced increases of population spike amplitudes
was recognized. Nearly identical results were seen in the
presence of aminoindan (s. Figure 4). On the opposite,
virtually no effect could be seen in the presence of sele-
giline up to a concentration of 5 pM. Thus, a clear dif-
ference could be observed between rasagiline and
aminoindan on one site and selegiline on the other side
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with respect to functional antagonism of NMDA gluta-
mate receptor stimulation.

¢) Functional interference with AMPA receptor activation
In order to test a possible interference of rasagiline, ami-
noindan or selegiline with AMPA receptor activation,
the glutamatergic neurotransmission was stimulated by
fluorowillardiine, a very potent and selective AMPA
receptor agonist. A concentration of 100 nM induced a
significant enhancement of the population spike ampli-
tude. Under the condition of single stimuli increase of
the amplitude from 1135 to 1692 pV (151% of control
value) could be observed (Figure 5). In the presence of
5 uM of rasagiline the amplitude remained at control
value (changing from 1089 to 1137 pV).

Statistically significant differences to the effect of
fluorowillardiine were observed with 2.5 pM of rasagi-
line (p < 0.02) and aminoindan (p < 0.01). Similar
results were obtained in the presence of theta burst sti-
mulation. Fluorowillardiine increased the amplitude
to 2873 pV. Rasagiline at a concentration of 5 pV

attenuated the fluorowillardiine-induced signal to a con-
trol value of 1950 uV. A statistically significant differ-
ence to fluorowillardiine-induced values was obtained at
the very low concentration of 1 pM of rasagiline
(p < 0.05).

Even stronger effects were seen in the presence of
aminoindan (s. Figure 2). Aminoindan attenuated the
amplitude of the population spike from 2888 uV down
to 1152 pV, which is far beyond the control values. Sta-
tistical significance in comparison to AMPA receptor
stimulation was obtained already at 1 uM of aminoin-
dan. Thus, a concentration dependent attenuation of
AMPA receptor induced increases of population spike
amplitudes was recognized for rasagiline and even more
for its metabolite aminoindan. On the opposite, virtually
no effect could be seen in the presence of selegiline up
to a concentration of 5 pM. Thus, a clear difference
could be observed between rasagiline and aminoindan
on one site and selegiline on the other side with respect
to functional antagonism also of AMPA glutamate
receptor stimulation.



Dimpfel and Hoffmann BMC Pharmacology 2011, 11:2
http://www.biomedcentral.com/1471-2210/11/2

Page 6 of 10

amplitude

[wvl/10
trans ACBD (0.05 pM)
340+ 1

320+

300+

280+

260+

240+

220+

2004

180+

160+

140+

1204

Control SS

100+ *

80-

conc [pM]
=~ Aminoindan

~{~ Rasagiline

Figure 4 Concentration dependent effects of rasagiline, aminoindan and selegiline in the presence of single stimuli (SS) or theta burst
stimuli (TBS) after stimulation of the NMDA glutamate receptor by ACBD (n = 4 slices +- SEM). Statistically significant attenuation of pop-
spike amplitude in comparison to ACBD-induced increases were obtained in the presence of 1 uM of rasagiline or aminoindan following single
stimuli (SS). During theta burst stimulation (TBS) already a concentration of 0.3 uM of rasagiline or aminoindan became statistically significant.
Stars indicate statistical significance of p < 0.05 in comparison to control.
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d) Functional interference with Kainate receptor
activation

In order to test a possible interference of rasagiline, ami-
noindane or selegiline with Kainate receptor activation,
glutamatergic neurotransmission was stimulated by
ATPA, a very potent and selective Kainate receptor ago-
nist. A concentration of 50 nM induced a significant
enhancement of the populations spike amplitude. Under
the condition of single stimuli increase of the amplitude
from 1097 to 1904 uV (174% of control value) could be
observed (Table 2). Virtually no effect on this signal
could be seen in the presence of rasagiline or aminoin-
dan up to a concentration of 5 uM. However, in the
presence of selegiline the amplitude remained at control
values (changing from 1083 to 1257 pV). Statistically
significant differences to the ATPA induced increase
were observed already with 2.5 puM of selegiline (p <
0.01). Similar results were obtained in the presence of
theta burst stimulation. ATPA increased the amplitude

to 3055 pV. Selegiline at a concentration of 5 pV atte-
nuated the ATPA-induced signal down to 2134 pV.
Thus, a concentration dependent attenuation of Kainate
receptor induced increases of population spike ampli-
tudes was recognized only for selegiline but not for rasa-
giline or aminoindan. Again a clear difference could be
observed between the effects of rasagiline and aminoin-
dan on one site and selegiline on the other side, but in
a reversed manner.

e) Functional interference with metabotropic glutamate
receptor activation

In order to test a possible interference of rasagiline, ami-
noindan or selegiline with metabotropic glutamate
receptor activation, ACPD, a very potent and selective
metabotropic glutamate receptor agonist, was used to
enhance pyramidal cell responses. A concentration of
25 nM induced a significant enhancement of the popu-
lation spike amplitude. Under the condition of single
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Figure 5 Concentration dependent effects of rasagiline, aminoindan and selegiline in the presence of single stimuli (SS) or theta burst
stimuli (TBS) after stimulation of the AMPA glutamate receptor by fluorowillardiine (n = 4 slices +- SEM). Statistically significant
attenuation of pop-spike amplitude in comparison to fluorowillardiine-induced increases were obtained in the presence of 1 uM of rasagiline or
aminoindan following single stimuli (SS). During theta burst stimulation (TBS) already a concentration of 1 uM of rasagiline or aminoindan
became statistically significant. Stars indicate statistical significance of p < 0.05 in comparison to control.

stimuli increase of the amplitude from 1068 to 2003 puV
(188% of control value) was observed (Figure 6). In the
presence of rasagiline and SS conditions the amplitude
remained at control value (changing from 1111 to
1134 pV). Statistically significant differences to the
ACPD induced increase were observed with 1 pM of
rasagiline (p < 0.01). Similar results were obtained in the
presence of theta burst stimulation. ACPD increased the
amplitude to 3027 pV. Rasagiline at a concentration of

Table 2 Amplitudes of population spike

5 pV attenuated the ACBD-induced signal down to con-
trol value (2050 pV). Thus, a concentration dependent
attenuation of the metabotropic glutamate receptor
induced increases of population spike amplitudes was
recognized. Nearly identical results were seen in the pre-
sence of aminoindan (s. Figure 6). On the opposite, vir-
tually no effect could be seen in the presence of
selegiline with a concentration of 5 pM. Thus, a clear
difference could be observed between rasagiline and

Single Stimulus

Theta Burst Stimulus

uv uv
RS-ATPA 0.05 pM -1904.2 = 554 -3054.5 £ 422
+ Rasagiline 5.00 uM -1789.0 £ 546 ns -2998.5 £+ 1083 n.s
+ Aminoindan 5.00 pM -1946.1 £ 588 ns -28508 £ 92.1 ns

+ Selegiline 2.50 pM
+ Selegiline 5.00 pM

-1616.1 + 37.8 p < 001
-1256.7 + 532 p < 001

25313 + 1364 p < 001
21336 + 484 p < 001

Effect of selegiline on Kainate receptor dependent increase of population spike amplitude, but lack of effect by rasagiline or aminoindan. Values are given as
mean of n = 4 slices +- S.E.M. Statistical significance to ATPA signal is given as p-value.
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Figure 6 Concentration dependent effect of rasagiline, aminoindan or selegiline in the presence of single stimuli (SS) or theta burst
stimuli (TBS) after stimulation of the metabotropic glutamate receptor by ACPD. Data are presented for the mean of n = 4 slices +- SEM.
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aminoindan on one site and selegiline on the other side
with respect to functional antagonism of metabotropic
glutamate receptor stimulation.

Discussion

The rat hippocampal in vitro slice preparation has been
used under physiological and pathophysiological condi-
tions. Two monoamine oxidase B inhibitors (rasagiline
and selegiline) and one compound lacking monoamine
oxidase B inhibition (aminoindan) have been compared
with respect to their ability to attenuate glutamatergic
transmission represented by decreasing responses of
pyramidal cells to electric stimulation. This result is
interpreted to represent functional neuroprotection
against massive glutamatergic excitation.

Since simulation of ischemic conditions by oxygen-
glucose deprivation (OGD) likewise resulted in showing
that rasagiline and aminoindan prevented the break-
down of excitability, these effects probably also relate to

neuroprotection (for selegiline this could be shown only
to a minor degree). The term neuroprotection usually is
taken to describe effects of drugs which might result in
disease modifying actions during the course of Alzhei-
mer’s or Parkinson’s illness. With respect to the latter,
better neuroprotective and neurorestorative actions have
been described for rasagiline in comparison to selegiline
against lactacystin-induced nigrostriatal dopaminergic
degeneration [27]. Also in a tissue culture model using
PC12 cells under oxygen-glucose deprivation, rasagiline
was clearly more effective than selegiline [28]. In addi-
tion, these authors could show that the neuroprotective
effects of selegiline were blocked by its metabolite 1-
methamphetamine whereas aminoindan added to the
effects of rasagiline. Taken together, all these findings
suggest that the aminoindan moiety might be more
important for neuroprotection than the propargyl moi-
ety as suspected earlier [29]. Our results are therefore in
line with earlier preclinical evidence for a
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neuroprotective action of rasagiline and its metabolite
aminoindan. The functional impairment of glutamate
dependent transmission obviously is not dependent on
inhibition of monoamine oxidase B. However, a link
between indirect inhibition of monoamine oxidase B
and blockade of glyceraldehyde-3-phosphate dehydro-
genase has recently been reported, which could also
serve as an explanation for neuroprotective effects of
rasagiline, selegiline and aminoindan [30].

The second part of the present investigation provides
solid evidence that both rasagiline and selegiline interact
functionally with glutamatergic receptor mediated trans-
mission in addition to their known effects on MAO B, but
by a different mechanism of action. The effects must be
independent of the enzyme inhibition for the following
reasons: firstly, aminoindan does not inhibit MAO B; sec-
ondly, both MAO inhibitors-rasagiline and selegiline-
develop different receptor-mediated functional conse-
quences within the glutamatergic system. This implicates
that rasagiline and its metabolite aminoindan probably
develop clinical properties different from that of selegiline.

A hypothesis exists that particular glutamate receptors
of the N-methyl-D-aspartate type are over-activated in a
tonic rather than a phasic manner, which under chronic
conditions leads to neuronal damage [31]. Another clini-
cal implication could be suspected from the combined
attenuation of NMDA and AMPA receptor dependent
effects: simultaneous administration of sub-threshold
dosages of NMDA and AMPA antagonists had a posi-
tive influence on the development of L-dopa induced
dyskinesias in rats and monkeys [32]. These data are
corroborated by earlier findings showing glutamate
super sensitivity in the putamen of Parkinson patients
treated chronically with L-dopa [33]. A common disad-
vantage of currently available rather unselective NMDA
receptor antagonists is the occurrence of adverse effects
like hallucinations [34]. Therefore, rasagiline and its
metabolite aminoindan, which do not induce such side
effects, but not selegiline with methamphetamine as its
metabolite, should have a positive effect on motor fluc-
tuations in Parkinson patients.

With respect to the involvement of metabotropic glu-
tamate receptors in Parkinson’s disease there is evidence
that they are involved in the pathologically altered cir-
cuitry in the basal ganglia. Several antagonists at this
receptor alleviated L-dopa induced dyskinesia in 6-OH
DA-lesioned rats [35]. Spontaneous firing of neurons in
primate pallidum was increased by metabotropic gluta-
mate receptor agonist DHPG and decreased by selective
antagonists [36], which is in line with our results. Since
glutamatergic input from the subthalamic nucleus shows
over-activity during the disease, antagonists very well
could compensate for this.
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Conclusions

Taking the effects of rasagiline and aminoindan
together, not only neuroprotective effects could be mea-
sured but attenuation of NMDA, AMPA and metabotro-
pic receptor mediated over-excitability of the
glutamatergic system, also motor complications in Par-
kinson’s disease-induced by imbalance of the glutama-
tergic system-should be ameliorated by a monotherapy
with rasagiline. In addition, the newly discovered
mechanism of action of rasagiline and aminoindan
should be considered in the light of an extension of the
clinical indication i.e. to treat Alzheimer’s disease (for
relation between Alzheimer’s disease and glutamatergic
system [37,38]. Last not least, over-activation of the glu-
tamatergic system also is one of the consequences dur-
ing stroke, amyotropic lateral sclerosis, Huntington’s
disease and neuropathic pain [39]. It remains to be
tested if pharmacological intervention by rasagiline and
its metabolite aminoindan provides a valuable therapeu-
tic strategy for treatment of these diseases in addition to
treatment of Parkinson’s disease.
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