

MEETING ABSTRACT

Open Access

Signalling and function of the human G protein-coupled receptor 55

Nariman Balenga¹, Julia Kargl¹, Ralf Schröder², Ákos Heinemann¹, Evi Kostenis², Maria Waldhoer^{1*}

From 16th Scientific Symposium of the Austrian Pharmacological Society (APHAR) Vienna, Austria. 25-27 November 2010

Background

We have recently shown that the G protein-coupled receptor 55 (GPR55) responds to some of the cannabinoid and non-cannabinoid ligands in addition to the classical cannabinoid 1 (CB $_1$) and 2 (CB $_2$) receptors. Here we show multiple signaling pathways triggered by GPR55 in response to its agonists. In addition the cytoskeleton rearrangement mediated by GPR55 is investigated.

Materials and methods

HEK-293 cells stably expressing the human GPR55 receptor were characterized in terms of signaling properties. To this end, reporter gene, dynamic mass redistribution (DMR), mitogen-activated protein kinases (MAPK) activation and phalloidin actin staining assays have been performed.

Results

Here we show that GPR55 is activated by lysophosphatidylinositol (LPI), AM251, SR141716A (rimonabant) and AM281. GPR55 activation induces NF- κ B, NFAT and CREB activation. Stimulation of GPR55 induces F-actin formation under the control of G α 13, RhoA and ROCK. We also show the suitability of Corning® Epic® DMR assay for GPR55 ligand screening. Furthermore, GPR55 activation leads to phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2).

Conclusions

GPR55 as the novel cannabinoid receptor triggers distinct signaling pathways in response to LPI and some classical CB_1 receptor inverse agonists/antagonists.

Stress fiber formation mediated by GPR55 might indicate the probable function of this receptor *in vivo*.

Author details

¹Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria. ²Section of Molecular, Cellular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.

Published: 16 November 2010

doi:10.1186/1471-2210-10-S1-A8

Cite this article as: Balenga *et al.*: Signalling and function of the human G protein-coupled receptor 55. *BMC Pharmacology* 2010 10(Suppl 1):A8.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Full list of author information is available at the end of the article

^{*} Correspondence: maria.waldhoer@medunigraz.at

¹Institute of Experimental and Clinical Pharmacology, Medical University of Graz. 8010 Graz. Austria