MEETING ABSTRACT

Open Access

Molecular engineering of the TRPC3 pore structure identifies Ca²⁺ permeation through TRPC3 channels as a key determinant of cardiac calcineurin/NFAT signaling

Michaela Lichtenegger¹, Hannes Schleifer¹, Thomas Stockner², Christoph Romanin³, Michael Poteser¹, Klaus Groschner^{1*}

From 16th Scientific Symposium of the Austrian Pharmacological Society (APHAR) Vienna, Austria. 25-27 November 2010

Background

TRPC channels have been identified as key players in cardiac remodeling and as crucial upstream components of NFAT signaling. The linkage between non-selective TRPC conductances and calcineurin/NFAT signaling may involve either direct TRC-mediated Ca^{2+} entry or indirect mechanisms involving crosstalk with other cardiac Ca^{2+} transport systems.

Methods

The pore structure of TRPC3 was analyzed by site-directed mutagenesis guided by a molecular modeling approach combined with patch-clamp measurements in the HEK293 expression system. TRPC3-mediated Ca^{2+} entry as well as NFAT translocation was investigated by fluorescence microscopy using Fura-2 and expression of a GFP-NFAT fusion protein in HEK293 as well as in HL1 cells.

Results

Elimination of Ca²⁺ permeation through TRPC3 abrogated its ability to trigger NFAT translocation in both HEK293 cells and in HL-1 atrial myocytes. Wild-type TRPC3 was found capable of initiating NFAT translocation in atrial myocytes by a small, homogenous elevation of cytoplasmic Ca²⁺ that was independent of voltagegated Ca_V1.2 channels. By contrast, a Ca²⁺ impermeant TRPC3 mutant strongly promoted endothelin-induced Ca²⁺ signals in HL1 cells via enhanced activity of Ca_V1.2 channels without concomitant NFAT translocation.

¹Institute of Pharmaceutical Sciences – Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria

Conclusions

Our results demonstrate two strictly separated Ca²⁺ signaling functions of cardiac TRPC3 channels as well as a tight and efficient link between TRPC3-mediated Ca²⁺ permeation and calcineurin/NFAT signaling.

Author details

¹Institute of Pharmaceutical Sciences – Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria. ²Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. ³Institute of Biophysics, University of Linz, 4040 Linz, Austria.

Published: 16 November 2010

doi:10.1186/1471-2210-10-S1-A15 **Cite this article as:** Lichtenegger *et al.*: Molecular engineering of the TRPC3 pore structure identifies Ca^{2+} permeation through TRPC3 channels as a key determinant of cardiac calcineurin/NFAT signaling. *BMC Pharmacology* 2010 **10**(Suppl 1):A15.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: klaus.groschner@uni-graz.at

Full list of author information is available at the end of the article