Skip to main content
  • Poster presentation
  • Open access
  • Published:

PDE2, a component of the NO/cGMP signalling in the hippocampus

Background

NO/cGMP-mediated signal transduction is involved in synaptic plasticity in various brain regions. NO effects are transduced by the NO receptor guanylyl cyclase (NO-GC) that exists in two isoforms, NO-GC1 and NO-GC2, with indistinguishable regulatory properties. Mice deficient in either NO-GC1 or NO-GC2 revealed that both NO-GC isoforms are required for LTP indicating the existence of two separated NO/cGMP pathways. Recently, we demonstrated a presynaptic role of NO/cGMP in facilitation of glutamate release and indentified eNOS and NO-GC1 as the participating enzymes. Yet, the involved cGMP-hydrolysing phosphodiesterases (PDE) remained unknown.

Results

Here we demonstrate that PDE2 accounts for 50% of cGMP-hydrolysing activity in hippocampal homogenates. In hippocampal slices of WT, NO-GC1 and NO-GC2 KO mice, PDE2 inhibition increased NMDA-induced cGMP levels.

Conclusion

This suggests PDE2 as a component of both NO-GC1- and NO-GC2-mediated signalling pathways. Moreover we analyzed the physiological role of the PDE2 on glutamatergic transmission in the hippocampal CA1 region by single-cell recordings in acute slices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Schönle.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Schönle, I., Neitz, A., Mittmann, T. et al. PDE2, a component of the NO/cGMP signalling in the hippocampus. BMC Pharmacol 11 (Suppl 1), P63 (2011). https://doi.org/10.1186/1471-2210-11-S1-P63

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1471-2210-11-S1-P63

Keywords