POSTER PRESENTATION

Open Access

Study on the involvement of soluble guanylyl cyclase and its different isoforms in carbon monoxide and carbon monoxide releasing molecule-2 induced vasodilatation

Kelly Decaluwé^{1*}, Bart Pauwels¹, Sara Verpoest¹, Robrecht Thoonen^{2,3}, Emmanuel Buys⁴, Peter Brouckaert^{2,3}, Johan Van de Voorde¹

From 5th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Halle, Germany. 24-26 June 2011

Background

Besides nitric oxide, carbon monoxide (CO) also activates soluble guanylyl cyclase (sGC). CO as well as the CO-donor CORM-2 have been shown to possess vasodilatory properties. Whether these vasodilatory properties by CO can be attributed to sGC activation is still a matter of debate. The aim of this study was to examine the involvement of sGC and its different subunits in CO and CORM-2 induced vasodilatation within different vascular tissues.

Materials and methods

Isometric tension recordings were performed using mice isolated aortic rings, femoral artery ring segments as well as corpora cavernosa (CC). To be able to distinguish between the different sGC subunits we evaluated responses to saturated CO solutions and CORM-2 in both sGCa₁^{-/-} and sGCβ₁^{KI/KI} mice and their wild-type controls.

Results

Saturated CO solution was unable to relax mice isolated blood vessels, whereas it induced concentrationdependent relaxations in mice CC. In CC of wild-type mice, the response to CO was completely inhibited by the sGC inhibitor ODQ. The involvement of sGC in the CO-induced corporal relaxation was further confirmed by the loss of response to CO in CC isolated

* Correspondence: Kelly.decaluwe@ugent.be

¹Department of Pharmacology, Ghent University, Ghent, Belgium Full list of author information is available at the end of the article

Conclusion

This study clearly illustrates that the molecular mechanism of CORM-2 induced vasorelaxation differs from that of CO induced vasorelaxation. While the CO induced vasorelaxation depends on activation of sGC, primarily the sGCa₁ β_1 heterodimer, the vasorelaxing properties of CORM-2 are only partially dependent or even completely independent upon sGC activation. The observation that CO is more effective in relaxing CC tissues than other cardiovascular tissues investigated in the present study suggests that the heme-oxygenase/CO pathway may present a potential new target for therapeutic approaches towards erectile dysfunction.

Author details

¹Department of Pharmacology, Ghent University, Ghent, Belgium. ²Department for Molecular Biomedical Research, VIB, Ghent, Belgium. ³Department of Biomedical Biology, Ghent University, Ghent, Belgium. ⁴Anesthesia Center for Critical Care Research, Department of Anesthesia and

© 2011 Decaluwé et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Published: 1 August 2011

doi:10.1186/1471-2210-11-S1-P20

Cite this article as: Decaluwé *et al*: Study on the involvement of soluble guanylyl cyclase and its different isoforms in carbon monoxide and carbon monoxide releasing molecule-2 induced vasodilatation. *BMC Pharmacology* 2011 **11**(Suppl 1):P20.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit