BMC Pharmacology

Poster presentation

Open Access

Hyper-contractility and impaired cGMP signaling in the BK_{Ca} channel deletion model of erectile dysfunction

Matthias E Werner*¹, Andrea L Meredith², Richard W Aldrich³ and Mark T Nelson⁴

Address: ¹Division of Cardiovascular and Endocrine Science, School of Medicine, University of Manchester, Manchester M13 9NT, UK, ²Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA, ³Section of Neurobiology, 1 University Station C7000, The University of Texas at Austin, Austin, TX 78712, USA and ⁴Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA

Email: Matthias E Werner* - Matthias.Werner@manchester.ac.uk

* Corresponding author

from 3^{rd} International Conference on cGMP Generators, Effectors and Therapeutic Implications Dresden, Germany. 15–17 June 2007

Published: 25 July 2007

BMC Pharmacology 2007, 7(Suppl 1):P65 doi:10.1186/1471-2210-7-S1-P65

This abstract is available from: http://www.biomedcentral.com/1471-2210/7/S1/P65

© 2007 Werner et al; licensee BioMed Central Ltd.

Erectile dysfunction (ED) is frequently elicited by a multiplicity of pathogenic factors, predominantly by impaired formation of and responsiveness to nitric oxide (NO) and the downstream effectors soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI). In smooth muscle, one important target of PKGI is the large conductance, calcium-sensitive potassium (BK_{Ca}) channel, which upon activation hyperpolarizes the smooth muscle cell membrane, causing relaxation. In our earlier report [1], we demonstrated that ablation of the gene, encoding for the pore-forming α subunit of the BK_{Ca} channel in mice (Slo^{-/-}) induced an increase of corpus cavernosum smooth muscle (CCSM) force oscillations, led to reduced nerve-evoked relaxations and ED. In our current work, we used this ED model to explore the role of the BK_{Ca} channel in the NO/cGMP pathway. Electrical field stimulation (EFS)-induced contractions of CCSM strips from Slo-/- mice demonstrated a 53% increase that could be reduced by sildenafil similar to levels observed in strips from wild-type (Slo+/+) mice. In Slo-/- strips precontracted with phenylephrine (PE), SNP and sildenafil induced relaxations, which were diminished by 10% and 7% over Slo+/+, respectively. Neither SNP nor sildenafil was able to reduce the enhanced force oscillations, which were induced by the loss of BK_{Ca} channel function. Yet, these oscillations could be completely eliminated by blocking L-type voltage-dependent calcium channels (VDCCs). The latter results indicate that loss of BK_{Ca} channel leads to ED and hyper-contractility likely due to instability of membrane potential which activates VDCCs. Moreover, since the relaxing effects of SNP and sildenafil were reduced in $Slo^{-/-}$, the ED phenotype in our BK_{Ca} channel deletion model could also be the consequence of an impaired NO/cGMP signaling pathway.

References

Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT: Erectile dysfunction in mice lacking the large conductance calcium-activated (BK) channel. J Physiol 2005, 567:545-556/Pkt.2.