BMC Pharmacology

Oral presentation Open Access

Resonance raman investigation of effects of YC-I and GTP on structure of CO-bound heme of soluble guanylate cyclase

Biswajit Pal¹, Zhengqiang Li^{1,3,4}, Shigeo Takenaka², Shingo Tsuyama² and Teizo Kitagawa*¹

Address: ¹Okazaki Institute for Integrative Bioscience, National Institute of Natural Sciences, Okazaki, Japan, ²Department of Veterinary Science, Osaka Prefecture University, Sakai, Japan, ³Centre for Cellular and Molecular Biology, Hyderabad, India and ⁴Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China

Email: Teizo Kitagawa* - teizo@ims.ac.jp

* Corresponding author

from 2nd International Conference of cGMP Generators, Effectors and Therapeutic Implications Potsdam, Germany, 10–12 June, 2005

Published: 16 June 2005

BMC Pharmacology 2005, 5(Suppl 1):S3 doi:10.1186/1471-2210-5-S1-S3

Resonance Raman (RR) spectra of soluble guanylate cyclase (sGC) reported by five independent research groups have been categorized into two types; sGC1 and sGC₂. Here we demonstrate that the RR spectra of sGC isolated from bovine lung contains only sGC₂ while both species are observed in the spectra of CO-bound form (CO-sGC). The relative populations of the two forms altered from an initial composition in which the CO-sGC₂ form predominated, with the Fe-CO (v_{Fe-CO}) and C-O stretching modes (v_{CO}) at 472 and 1985 cm⁻¹, respectively, to a composition dominated by the CO-sGC₁ form with $v_{\text{Fe-CO}}$ and v_{CO} at 488 and 1969 cm⁻¹, following the addition of xenobiotic, YC-1. Further addition of a substrate, GTP, completed the change. GDP and cGMP had a similar but significantly smaller effect, while a substrate analogue, GTP- γ -S had an effect similar to that of GTP. In contrast, ATP had a reverse effect, and suppressed the effects of YC-1 and GTP. In the presence of both YC-1 and GTP, vinyl vibrations of heme were significantly influenced.

In the absence of any effectors, the Fe-CO stretching and the heme vinyl bending modes appeared at 473 and 424 cm⁻¹, respectively. There was no band around 372 cm⁻¹. However, in the presence of YC-1 and GTP, the Fe-CO stretching mode was shifted to 489 cm⁻¹ and the vinyl mode appeared at 400 cm⁻¹. The propionate mode appeared at 372 cm⁻¹ as a sharp band. The vinyl modes at 424 and 400 cm⁻¹ are assigned to the vinyl-2 and vinyl-4 C_{β} - C_{a} = C_{b} bending vibrations that are strongly coupled with ring modes of pyrroles-I and II, respectively, while

the propionate mode is coupled with ring modes of pyrroles-III and IV. In addition, new CO-isotope sensitive bands were observed at 521, 363, and 227 cm⁻¹. The 521 cm⁻¹ band was assigned to the five-coordinate (5c) species from the model compound studies using ferrous iron-protoporphyrin IX in CTAB micelles. Distinct from the 472 cm⁻¹ species, both the 488-cm⁻¹ and 521-cm⁻¹ species were apparently unphotodissociated when an ordinary Raman spinning cell was used with a CW laser source for Raman excitation, indicating rapid recombination of photodissociated CO in the presence of YC-1 and GTP. On the basis of these findings, binding of YC-1 and GTP to the heme pocket is proposed.