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Abstract

Background: The serotonin 5-HT2C receptor (5-HT2CR) is expressed in amygdala, a region involved in anxiety and
fear responses and implicated in the pathogenesis of several psychiatric disorders such as acute anxiety and post
traumatic stress disorder. In humans and in rodent models, there is evidence of both anxiogenic and anxiolytic
actions of 5-HT2C ligands. In this study, we determined the responsiveness of 5-HT2CR in serotonin transporter
(SERT) knockout (-/-) mice, a model characterized by increased anxiety-like and stress-responsive behaviors.

Results: In the three-chamber social interaction test, the 5-HT2B/2C agonist mCPP decreased sociability and sniffing
in SERT wildtype (+/+) mice, both indicative of the well-documented anxiogenic effect of mCPP. This 5-HT2C-
mediated response was absent in SERT -/- mice. Likewise, in the open field test, the selective 5-HT2C agonist RO
60-0175 induced an anxiogenic response in SERT +/+ mice, but not in SERT -/- mice. Since 5-HT2CR pre-mRNA is
adenosine-to-inosine (A-to-I) edited, we also evaluated the 5-HT2CR RNA editing profiles of SERT +/+ and SERT -/-
mice in amygdala. Compared to SERT +/+ mice, SERT-/- mice showed a decrease in less edited, highly functional
5-HT2C isoforms, and an increase in more edited isoforms with reduced signaling efficiency.

Conclusions: These results indicate that the 5-HT2CR in the amygdala of SERT -/- mice has increased RNA editing,
which could explain, at least in part, the decreased behavioral responses to 5-HT2C agonists in SERT -/- mice. These
alterations in 5-HT2CR in amygdala may be relevant to humans with SERT polymorphisms that alter SERT
expression, function, and emotional behaviors.

Keywords: 5-HT2C RNA editing, SERT, anxiety, amygdala

Background
The serotonergic system has been implicated in the
pathophysiology and treatment of mood and anxiety dis-
orders, as well as schizophrenia [1,2]. The neurotrans-
mitter serotonin (5-hydroxytryptamine, 5-HT) influences
neuronal activity via 14 5-HT receptors termed 5-HT1

through 5-HT7 (for a review, see [3]). The 5-HT2C

receptor (5-HT2CR) has been implicated in normal and
altered function of neural circuitries involved in these
neuropsychiatric disorders via genetic, immunohisto-
chemical and pharmacological approaches [2,4,5]. The
5-HT2CR is a G-protein coupled receptor (GPCR)

coupled to PLC and PLA2, although additional signaling
cascades have also been described [6-8].
Our previous work indicates that 5-HT transporter

(SERT) knockout (-/-) mice are a valid model to study
anxiety-related behaviors. These mice exhibit a complex
phenotype dominated by anxiety, exaggerated stress
responsiveness, and other physiological effects such as
obesity and type 2 diabetes-like symptoms, all of which
have been previously associated with 5-HT2CR genetic
deficiencies ([9-12]; for a full review of SERT -/- mice,
see [1]). Qu and colleagues [13] found a reduction in
5-HT2R-induced arachidonic acid release in multiple
brain regions including the basolateral amygdaloid com-
plex of SERT -/- mice [13,14]. Further, we previously
showed increased 5-HT2CR binding sites with no mRNA
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changes in the amygdala of SERT -/- mice compared
SERT +/+ mice [15]. The exact mechanisms responsible
for the anxiety-like phenotype of SERT-/- mice are,
however, not completely understood.
In humans and rodents, 5-HT2CR pre-mRNA is sub-

ject to adenosine-to-inosine (A-to-I) RNA editing
[16,17]. These base changes may result in an amino
acid/protein different from those encoded by genomic
DNA. It has been shown that RNA editing alters the
G-protein efficiency of the 5-HT2CR and its intracellular
downstream effects and interactions with both endogen-
ous and exogenous receptor agonists, as well as desensi-
tization mechanisms and constitutive activity [17-20]. It
is noteworthy that the 5-HT2CR is the only example
among the hundreds of GPCRs which exhibits this post-
transcriptional processing [5].
A body of evidence suggests there are alterations in

the 5-HT2CR editing pattern in patients with certain
neuropsychiatric diseases, and it has been suggested that
5-HT2CR RNA editing may play a role in anxiety and
depression [21-25]. The aim of the current study was to
evaluate the status of 5-HT2CR-mediated anxiety-like
behaviors in SERT -/- mice. The finding that SERT -/-
mice were unresponsive to systemic administration of
5-HT2CR agonists at doses that elicited anxiogenic
responses in SERT +/+ mice prompted us to further
investigate the RNA editing profile of the 5-HT2CR in
SERT -/- mice. We chose the amygdala as our primary
target, since this region is critical in anxiety-related
behaviors in rodents, non-human primates and humans
[2,26-28].

Results
Behavioral analysis
Social interaction test
In the social interaction test we first assessed “sociability”
(the preference for spending time in the stranger side
vs. the empty side) [main effects of side (F1,22 = 61.53, p <
0.0001); genotype (F1,22 = 0.92, N.S.) and drug (F1,22 =
1.72, N.S.); side × genotype interaction (F1,22 = 1.10, N.S.),
side × drug interaction (F1,22 = 1.18, N.S.), genotype ×
drug interaction (F1,22 = 0.56, N.S.) and side × drug ×
genotype interaction (F1,22 = 6.87, p = 0.016)]. In vehicle-
treated mice, there were no significant differences in socia-
bility between SERT +/+ and -/- mice (Figure 1A). In
SERT +/+ mice, administration of mCPP reduced sociabil-
ity, indicative of its anxiogenic effect, whereas mCPP had
no effect in SERT -/- mice, reflecting a diminished respon-
siveness of the 5-HT2CR (Figure 1A).
We next assessed “sniffing” (time spent sniffing the

stranger cage vs. the empty cage) [main effects of side
(F1,22 = 183.26, p < 0.0001), genotype (F1,22 = 5.59, p =
0.027) and drug (F1,22 = 8.97, p = 0.007); side × genotype
interaction (F1,22 = 0.002, N.S.), side × drug interaction

(F1,22 = 6.98, p = 0.015), genotype × drug interaction
(F1,22 = 10.13, p = 0.004), and side × drug × genotype
interaction (F1,22 = 11.61, p = 0.003)]. Vehicle-treated
SERT +/+ and -/- mice both spent more time sniffing the
stranger vs. the empty cage (Figure 1B). However, mCPP-
treated SERT +/+ mice spent significantly less time sniff-
ing the stranger cage compared to vehicle-treated SERT
+/+ mice, whereas mCPP was without such an effect in
SERT -/- mice (Figure 1B).
To rule out a possible role for changes in locomotor

activity, we also assessed the number of entries to each
side chamber [main effects of side (F1,22 = 28.23, p <
0.0001), genotype (F1,22 = 5.69, p = 0.026) and drug (F1,22
= 0.56, N.S.); side × genotype interaction (F1,22 = 0.20,
N.S.), side × drug interaction (F1,22 = 0.03, N.S.), genotype
× drug interaction (F1,22 = 0.56, N.S.), and side × drug ×
genotype interaction (F1,22 = 0.33, N.S.)]. There were no
significant differences in the number of entries to the side
chambers based on genotype or drug administration,
suggesting that differences in locomotor activity did not
play a role in the differences in anxiogenic responses
elicited by mCPP in SERT +/+ mice (Figure 1C).
Administration of the selective 5-HT2CR antagonist RS

102221 15 min prior to mCPP blocked the anxiogenic
effect of mCPP on sociability in wildtype C57BL/6J mice
(Figure 2), confirming that the mCPP-induced anxio-
genic response in the social interaction test was
mediated by 5-HT2CR [main effects of side (F1,36 =
64.29, p < 0.0001) and drug (F3,36 = 0.64, N.S.); side ×
drug interaction (F3,36 = 6.43, p = 0.001). Neither RS
102221 nor mCPP, administered alone or in combina-
tion, affected locomotor activity (data not shown).
Open field test
To further explore this apparent reduction in responsive-
ness of 5-HT2CR observed in the social interaction test,
we tested the effects of the 5-HT2C agonist RO 60-0175
in the open field test. For the frequency in the center of
the open field, there was a significant main effect of gen-
otype (F1,34 = 20.70, p < 0.0001), a significant main effect
of drug condition (F1,34 = 9.75, p = 0.004) and a signifi-
cant genotype × drug condition interaction (F1,34 = 4.78,
p = 0.036). Following vehicle, SERT -/- mice made fewer
visits to the center of the open field compared to SERT
+/+ mice (Figure 3A). In SERT +/+ mice, treatment with
RO 60-0175 decreased the frequency of visits to the cen-
ter of the open field to levels observed in SERT -/- mice,
suggestive of an anxiogenic effect, whereas RO 60-0175
had no effect in SERT -/- mice (Figure 3A). Regarding
the total distance traveled, there was a significant main
effect of genotype (F1,34 = 8.23, p = 0.007), a significant
main effect of drug condition (F1,34 = 8.05, p = 0.008)
and a significant genotype × drug condition interaction
(F1,34 = 5.50, p = 0.025). At baseline, SERT -/- mice
displayed less locomotor activity than SERT +/+ mice
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Figure 1 Effects of mCPP in the social interaction test in SERT +/+ and -/- mice. 1A. Effects of mCPP on “sociability”. SERT +/+ and -/- mice
were given vehicle or mCPP 1 mg/kg ip 30 min prior to testing. mCPP decreased sociability (indicating increased anxiety) in SERT +/+ mice, with
no effects in SERT -/- mice. 1B. Effects of mCPP on “sniffing.” SERT +/+ and SERT -/- mice were given vehicle or mCPP 1 mg/kg ip 30 min prior
to testing. mCPP decreased sniffing in SERT +/+ mice (indicating increased anxiety), with no effects in SERT -/- mice. 1C. Effects of mCPP on
locomotor activity. There was no effect of mCPP 1 mg/kg ip administered 30 min prior to testing on the number of entries into the different
chambers. Data represent the mean ± SEM, 7 animals per group. ***p < 0.001, **p < 0.01, and *p < 0.05 vs. the stranger chamber in mice of the
same genotype in the same drug condition; +++ p < 0.01 vs. mice of the same genotype given vehicle; N.S. not significant.
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(Figure 3B). There was also a reduction in locomotion in
SERT +/+ mice after RO 60-0175 administration, to
levels comparable to SERT -/- mice; RO 60-0175 did not
alter locomotion in SERT -/- mice. Activity in periphery,
however, remained unchanged (data not shown).

RNA editing
Positively sequenced clones were used to compare the
5-HT2CR RNA editing profiles of SERT +/+ and -/- mice.
The change in the editing rate at each specific editing site
is shown in Figure 4A. Compared to SERT +/+ mice,
SERT -/- mice had significant increases in the editing rate
of site A (89.1% vs. 69.7%, p = 0.009), site B (84.2% vs.
65.9%, p = 0.0227) and site D (79.3% vs. 68.9%, p = 0.04).
No differences in editing rates between the two SERT gen-
otypes were found for sites C or E. The frequency of the
RNA isoforms expressed at least 3% in one of the geno-
types is shown in Figure 4B. Compared to SERT +/+ mice,
SERT -/- mice evidenced a significant decrease in the
expression of the non-edited (3.7% vs. 12.5%, p = 0.0003),
D (3.7% vs.11.3%, p = 0.0117) and BD (4.6% vs.1.1%,
p = 0.0356) isoforms. Further, two of the 5-HT2CR RNA
isoforms were significantly increased in SERT -/- mice
compared to SERT +/+ mice; ABD (42.2% vs.27.9%, p =
0.0012) and ABCD (23.4% vs. 17.1%, p = 0.016). Overall,
this comparison of 5-HT2CR RNA editing profiles shows
an increase in editing in SERT -/- mice vs. SERT +/- mice
which results in a shift from non/low editing isoforms
toward highly/full edited isoforms.

Discussion
To our knowledge, the present data document the first
assessments of anxiety-related behavioral alterations eli-
cited by 5-HT2CR agonists in SERT -/- mice. Specifically,
in the social interaction test, there were no significant

differences in baseline assessments (vehicle administra-
tion) between SERT +/+ and SERT -/- mice. However,
the anxiogenic response induced by the 5-HT2R agonist
mCPP in SERT +/+ mice was absent in SERT -/- mice.
The role of 5-HT2CR in this anxiogenic response was
confirmed by pretreatment with the selective 5-HT2CR
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Figure 2 Effects of pretreatment with the selective 5-HT2C
antagonist RS 102221 on the anxiogenic effects of mCPP on
“sociability” in the social interaction test in wildtype C57BL/6J
mice. Mice were given vehicle or RS 102221 1 mg/kg ip 15 min
prior to vehicle or mCPP 1 mg/kg ip. RS 102221 antagonized the
anxiogenic effects of mCPP on “sociability.” Data represent the
mean ± SEM, 5-7 animals per group. ****p < 0.0001 and **p < 0.01
vs. the stranger chamber in mice of the same genotype in the same
drug condition; N.S. not significant.
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Figure 3 Effects of RO 60-0175 in the open field test in
SERT +/+ and -/- mice. 3A. Effects of RO 60-0175 on anxiety-like
behavior. SERT +/+ and SERT -/- mice were given vehicle or RO
60-0175 4 mg/kg ip 30 min prior to testing. RO 60-0175 increased
anxiety-like behavior (decreased visits to the center) in the open
field in SERT +/+ mice, with no effect in SERT -/- mice. 3B. Effects
of RO 60-0175 on locomotor activity. RO 60-0175 4 mg/kg ip
administered 30 min prior to testing decreased the total distance
traveled in SERT +/+ mice compared to vehicle, with no effects in
SERT -/- mice. Data represent the mean ± SEM, 9-10 animals per
group. ****p < 0.0001 vs. SERT +/+ mice in the same drug
condition; ++ p < 0.01 and + p < 0.05 vs. mice of the same
genotype administered vehicle.
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antagonist RS 102221, which blocked the anxiogenic
effect of mCPP in wildtype C57BL/6J mice. Others have
previously shown that both systemic and local (intra-
amygdala) administration of mCPP increases anxiety
levels in rodents, indicating that these receptors - possi-
bly in the basolateral amygdala - are responsible for the
anxiogenic effect of mCPP [29,30].We also replicated
previous findings from our lab showing that SERT -/-
mice exhibit increased baseline anxiety-like behaviors in
the open field test (for a review, see [1]). In addition, we
showed that the anxiogenic response induced by the
selective 5-HT2C agonist RO 60-0175 in the open field
test in SERT +/+ mice is abolished in SERT -/- mice.
Using autoradiography to determine binding sites and

in situ hybridization for mRNA content, previous
reports from our lab indicate that 5-HT2CR mRNA
levels are unaltered in amygdala of SERT -/- mice,
whereas 5-HT2CR binding sites are significantly
increased in this region [15]. We therefore hypothesized
that differences in RNA editing levels might account for
this apparent discrepancy between levels of binding sites

and the 5-HT2CR responsiveness to agonist stimulation.
Given previous reports indicating that intra-amygdala
injections of mCPP were able to elicit anxiogenic
responses in rodents [29,30], and the known role of this
brain region in rodent and human anxiety, we focused
our efforts on characterizing the RNA editing profile of
5-HT2CR in amygdala of SERT -/- mice compared to
that of their SERT +/+ littermates.
SERT -/- mice had significantly decreased frequencies

of non-edited, D and BD isoforms, as well as a signifi-
cantly increased frequencies of the ABCD and ABD iso-
forms, the latter being the major isoform present in
both SERT +/+ and -/- mice. ABCD codes for the VSV
variant of the 5-HT2CR, and has been shown to exhibit
reductions in receptor signaling both in agonist-elicited
and intrinsic activity [16,31]. The major isoform ABD
codes for the variant VNV together with the AD iso-
form, which was slightly increased in SERT -/- mice
compared to SERT +/+ mice. Previous studies also show
that the VNV is the major 5-HT2CR isoform present in
C57BL/6J mice [32,33]. The VNV variant has reduced
basal activity with no alteration in the potency of 5-HT
stimulation [16,31]. Thus, the present results suggest
that SERT gene deletion shifts the RNA editing profile
of the 5-HT2CR pre-mRNA population toward more
edited, less active isoforms. This might explain the lack
of effect of 5-HT2C agonists in both the social interac-
tion and open field tests in SERT -/- mice at doses
which were anxiogenic in SERT +/+ mice. It is impor-
tant, however, to emphasize that the aforementioned
reports indicating pharmacological differences among
5-HT2CR RNA editing isoforms were conducted with
human and rat clones of each RNA isoform heterolo-
gously expressed, therefore caution is required when
comparing the values from the present in vivo study
conducted in mice [16,31].
Previous reports have shown that pharmacological

manipulations of serotonergic tone have an impact on
5-HT2CR RNA editing, either by direct 5-HT2CR activa-
tion by the non-selective 5-HT2 agonist DOI or by
chronic fluoxetine (a selective serotonin reuptake inhibi-
tor (SSRI)) treatment. Gurevich and colleagues [21]
found that 129Sv mice treated with chronic fluoxetine
exhibit significantly increased editing in site D and sig-
nificantly decreased editing in site E. Chronic fluoxetine
treatment in C57BL/6J mice, however, led to modest,
non-significant changes in 5-HT2CR RNA editing,
whereas the same treatment in BALB/c mice led to
significant increases in editing of sites A, B, C and D
[22]. In SERT -/- mice, extracellular 5-HT levels are
increased 3-6 fold in brain [1,34]. Our current results
suggest that, as a result of a targeted gene deletion of
SERT, the increased extracellular levels of 5-HT alters
5-HT2CR RNA editing. In addition, these results suggest
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Figure 4 RNA editing profiles of 5-HT2CR mRNA in amygdala of
SERT +/+ and -/- mice. 4A. 5-HT2CR RNA editing per site.
Compared to SERT +/+ mice, SERT -/- mice had significant increases
in the editing rate of sites A, B and D, with no differences in editing
rates for sites C or E. 4B. Frequency of 5-HT2CR isoforms. Compared
to SERT +/+ mice, SERT -/- mice evidenced a decrease in the
expression of the non-edited, D and BD isoforms, and an increase in
the ABD and ABCD isoforms. Data represent the mean ± SEM, 4
animals per group. ***p < 0.001, **p < 0.01 and *p < 0.05
significantly different from SERT +/+ mice.
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that targeted SERT gene deletion has a more profound
impact than 28 days of treatment with fluoxetine in
C57BL/6J wildtype mice [21]. However, it is important
to note that the prior studies analyzed 5-HT2CR RNA
editing in forebrain neocortex [21,22,35], whereas the
current study analyzed 5-HT2CR RNA editing in amyg-
dala; thus, a direct comparison of these studies with the
current studies is limited by the anatomical differences.
The observed increase in the frequency of 5-HT2CR

RNA editing in SERT -/- mice might also explain the
apparent paradoxical upregulation of the number of
5-HT2CR binding sites previously observed in SERT -/-
mice [15]. It has been shown that RNA editing also
alters the ratio of alternative splicing variants, promoting
the generation of the full mRNA variant coding for the
functional protein in vitro [36], and recently in vivo
[23]. Thus, the increased RNA editing observed here in
SERT -/- mice might be related to the previously
observed increase in surface expression of 5-HT2CR
[15]. Another plausible link between RNA editing and
5-HT2CR upregulation is receptor desensitization [5]. It
is known that the non-edited 5-HT2CR isoform exhibits
the highest constitutive activity and is present mainly
intracellularly, whereas more edited isoforms are present
largely as membrane-bound receptors and are more
resistant to desensitization, at least in vitro [37,38]. The
observed increase in 5-HT2CR RNA editing in SERT -/-
mice, which generates receptor isoforms with less effica-
cious signaling and reduced basal activity, is in line with
previous findings of a reduction in DOI-induced arachi-
donic acid release in several brain regions, including the
basolateral amygdaloid complex, in SERT -/- mice
[13,14]. However, the concomitant activation of 5-HT2A

receptors does not allow a claim to be made for reduced
activity of 5-HT2CR in those studies, especially as other
signaling pathways for 5HT2CR receptors exist (e.g.,
PLC/IP3).
There is considerable evidence suggesting the involve-

ment of 5-HT2CR in anxiety-related behaviors, although
there is still debate about the precise role of this recep-
tor in anxiety (for a review, see [2]). For example, it has
been shown that activation of 5-HT2CR mediates the
anxiogenic-like effects elicited by the non-selective
5-HT2C agonist mCPP in rodents, replicated in the cur-
rent studies, and in humans [2,39,40]. Similarly, selective
5-HT2CR antagonists have been shown to exert anxioly-
tic effects in several animal models of anxiety in some
reports [41,42], but not in others [43,44]. The current
results are in line with reports of initial anxiogenic-like
effects of SSRIs treatment in both humans and in
several animal models of anxiety [45]. The current data
also show that, as indicated above, varying SERT expres-
sion can have profound consequences on the functional
status of postsynaptic 5-HT2CR receptors, as expected

from the marked increases in extracellular levels of
5-HT found in SERT -/- mice [34]. These results also
suggest that polymorphisms affecting SERT expression
might exert a modulatory effect on the functional status
of 5-HT2CR in humans. This might have implications
for personalized medicine, as several selective 5-HT2CR
agonists are being proposed as anti-obesity agents that
have now advanced to clinical trials [46], in addition to
the reported potential use of 5-HT2CR antagonists as
anxiolytics [41].
The current studies focused on the analysis of RNA

editing in amygdala, a key region involved in fear and
anxiety. However, the circuit controlling anxiety-related
traits and responses spans multiple regions. It will be of
interest for future research to examine different brain
areas to evaluate potential region-specific alterations in
5-HT2CR RNA editing frequencies, based on previous
studies showing brain region-specific alterations in tis-
sue 5-HT content, and in 5-HT synthesis and turnover
rates [9,47,48]. A detailed characterization of the role of
5-HT2CR in amygdala control and in alterations in its
RNA editing profile might also require a finer dissection
(such as laser-caption microdissection) of the different
subregions of the heterogeneous amygdala structure.

Conclusions
In summary, for the first time, we report functional
alterations of 5-HT2CR-mediated responses to agonist
stimulation in SERT -/- mice, as observed in the social
interaction and open field paradigms. Further, we sug-
gest that this alteration could be, at least in part, be
explained by the significant increases in RNA editing of
5-HT2CR in the amygdala of SERT -/- mice that gener-
ates less active receptor isoforms. These findings will
help to unravel the role of 5-HT neurotransmission in
amygdala activity, especially in terms of alterations in
SERT expression reported in humans with different
alleles for the SERT promoter (5-HTTLPR s and l
alleles) and other polymorphisms affecting SERT expres-
sion that have been found to be relevant in neuropsy-
chiatric disorders [49-51]. Additional efforts are needed
to further dissect the role of the 5-HT2CR among differ-
ent amygdala subnuclei and in different neuronal types,
to further understand the physiological relevance of
5-HT2CR editing in this and other brain regions, in
addition to the role of 5-HT2CR in neuropsychiatric
disorders.

Methods
Animals
Male SERT +/+ and -/- mice were originally produced
by homologous recombination in ES cells as previously
described [52], and are currently the product of ~20-24
heterozygous backcrosses with wildtype mice on a
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C57BL/6J genetic background. Commercial wildtype
C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME)
were used for the antagonism experiment. The animals
weighed ~20-35 g at the time of the experiments, and
were housed in groups of 3-5 per cage with food and
water available ad libitum. The animals were maintained
on a 12-h light/dark cycle (lights on 0600 hours) in a
facility approved by the American Association for
Accreditation of Laboratory Animal Care. All experi-
ments adhered to the guidelines of the National Insti-
tutes of Health, and were approved by the National
Institute of Mental Health Animal Care and Use
Committee.

Drugs and drug administration
The following compounds were used: (i) the 5-HT2B/2C

agonist 1-(3-chlorophenly)piperazine (mCPP) (Tocris
Bioscience, Ellisville, MO), (ii) the selective 5-HT2C ago-
nist (aS)-6-Chloro-5-fluoro-a-methyl-1H-indole-1-
ethanamine fumarate (RO 60-0175), and (iii) the
selective 5-HT2C antagonist 8-[5-(2,4-Dimethoxy-5-
(4-trifluoromethylphenylsulphonamido)phenyl-5-oxopen-
tyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione hydrochloride
(RS 102221) (Tocris Bioscience, Ellisville, MO). mCPP
was administered at a dose of 1 mg/kg and RO 60-0175
was administered at a dose of 4 mg/kg, based on
previous investigations that showed behavioral effects at
these doses [29,43] and preliminary pilot studies per-
formed in our lab. RS 102221 was administered at
1 mg/kg based on previous investigations [53]. mCPP
and RO 60-0175 were dissolved in saline (sterile 0.9%
NaCl solution), and RS 10221 was dissolved in 1%
DMSO and saline. Drugs were injected via intraperito-
neal (ip) injection (injection volume 10 ml/kg) 30 min
prior to behavioral testing. In the antagonism study, RS
102221 was injected 15 min prior to mCPP.

Behavioral paradigms
A separate cohort of animals was used for each beha-
vioral study. On test days, animals were moved in their
home cage to a dimly lit testing room 1 h prior to
experiments. All behavioral experiments were carried
out between 1000 and 1400 hours.
Social interaction test
The social interaction test was used because it can
detect the anxiolytic and anxiogenic effects of serotoner-
gic agents [54,55]. SERT +/+ and -/- mice were injected
with either vehicle (saline) or mCPP. Thirty min later,
mice were tested in an automated three-chamber box as
described previously [56]. Dividing walls had retractable
doorways allowing access into each chamber. The auto-
mated box had photocells embedded in each doorway to
allow quantification of the number of entries and the
duration in each chamber of the social test box. The

chambers of the apparatus were cleaned with water and
dried with paper towels between each trial. At the end
of each test day, the apparatus was sprayed with 70%
ethanol and wiped clean with paper towels. The test has
three 10-min phases: (1) Center habituation - the test
mouse was first placed in the middle chamber and
allowed to explore, with the doorways into the two side
chambers closed; (2) Side chamber habituation - the
mouse was allowed to explore the entire social test box,
with the doorways into the two side chambers open,
and (3) Sociability - after the second habituation period,
the test mouse was enclosed in the center compartment
of the social test box, and an unfamiliar mouse (“stran-
ger,” an adult C57BL/6J male) was enclosed in a wire
cage (11 cm height, 10.5 bottom diameter, bars spaced
1 cm apart; Galaxy Cup; Spectrum Diversified Designs,
Inc., Streetsboro, OH) and placed in a side chamber,
and a similar empty wire cage was placed in the other
side chamber. The location of the stranger alternated
between the left and the right sides of the social test
box between subjects. Following placement of the stran-
ger mouse, the doors were reopened, and the subject
was allowed to explore the entire social test box. The
automated testing system recorded the amount of time
spent and the number of entries in each chamber. In
addition, the time spent sniffing each wire cage was
recorded by an experimenter blind to the administered
drug.
Open field test
As pilot studies indicated that a range of doses of mCPP
(0 - 5 mg/kg) did not elicit anxiogenic effects in the
open field test, we evaluated the effects of RO 60-0175,
a selective 5-HT2CR agonist. SERT +/+ and -/- mice
were injected with either vehicle or RO 60-0175. Thirty
min later, mice were placed in the corner of a novel
open field arena (40 × 40 × 35) and were allowed to
explore for 5 min. Behaviors, including distance traveled
(cm) and frequency of visits to center (20 × 20 cm),
were recorded using the Noldus Ethovision Video
Tracking system (Noldus Information Technology, Lees-
burg, VA).

RNA editing
Determinations of RNA editing profiles were performed
in a separate cohort of SERT +/+ and -/- mice. Amyg-
dala samples were obtained as previously described [32].
Mice were sacrificed and brains were rapidly removed
and placed in a brain block matrix. 1 mm coronal sec-
tions encompassing the amygdala region were dissected
(posterior to the optic chiasm and anterior to the pons
as ventral surface landmarks). From coronal sections,
tissue containing visible amygdala nuclei was dissected
using the rhinal sulcus as a guide. The tissues from
both hemispheres were collected together.
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Total RNA was extracted using miRvana PARIS Kit
(Ambion, Austin, TX). 480 ng were used in first-strand
cDNA synthesis using SuperScript III First-Strand
SuperMix (Invitrogen, Carlsbad, CA) using the gene-
specific primer CGGCGTAGGACGTAGATCGTTAAG
[33]. Amplification of the edited region was performed
using primers sense (5’-TGTGCTATTTTCAACTGC
GTCCATCATG), antisense (5’-CGGCGTAGGACGTA-
GATCGTTAAG) and Master Mix (Promega, Madison,
WI). PCR products were cloned into pCR2.1 vector
(Invitrogen, Carlsbad, CA) and used for transformation
in E. coli. From each animal, isolated colonies were ran-
domly chosen for plasmid DNA isolation (Qiagen,
Valencia, CA) and bidirectionally sequenced with M13
primers at the National Institute of Neurological Disor-
ders and Stroke (NINDS) intramural DNA sequencing
core facility. Raw chromatograms from 60 positively
sequenced colonies per animal (240 per genotype) were
analyzed for changes in the editing region previously
described.

Statistical analysis
For each experiment, data were analyzed using two-way
(genotype × drug condition) or three-way (genotype ×
drug condition × side) analyses of variance (ANOVAs),
or by t-tests when only two groups were compared.
Post-hoc comparisons between genotypes or between
drug conditions were conducted using t-tests. Signifi-
cance was based on p < 0.05.
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